Co-Processing for Refinery Integration of Biofuels Production

Duncan Akporiaye, SINTEF

Oil Forum of the Energy Community, 13th October 2021

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727531.
An independent, Norwegian Research Institute
Process Technology: Micro to full Pilot

- High Throughput
- Micro-Structured
- CCS Full Pilot
- Tiller Sustainability Pilot Lab
- Refinery Mini Pilot
Background

- Need for rapid scale-up of production of biofuels to meet the current climate mitigation targets for transport sector
- The focus on drop-in fuels seen as a route to meet these targets based on using current transport infrastructure
- The integration with existing European refinery infrastructures could fulfil this potential through co-integration, co-processing, co-refining
 - Reduce the capital cost
 - Build on existing processes
 - Integrate with existing value chains
EU funded Projects research in Co-Processing

Municipal Waste as feedstock toward co-processing in Refinery

Lignocellulose feedstock toward co-processing in Refinery

Gasification and Pyrolysis routes for Biofuels production

European Union’s Horizon 2020 research and innovation program, GA No. 727531
Co-processing Challenge: Oxygen Removal + Energy densification

Biomass

Bio crude

Fuel

Decreasing Oxygen Content

Decreasing Molecular weight

Complex solid Feedstock

Liquefaction Processes

Refinery Processes

Drop in Fuel

4refinery Strategy

Diversity of Biomass
- Wood
- Straw
- Eucalyptus

Complementary Liquefaction technologies
- Pyrolysis
- HTL

Integration with refinery
4refinery Strategy

Diversity of Biomass

Wood

Straw

Eucalyptus

Complementary Liquefaction technologies

Pyrolysis

HTL

Integration with refinery

Public Acceptance

Business Case
Supply chain & market assessment – Feedstock

- Biomass supply chains are relatively immature at present - vary by feedstock and region.
- Common challenges:
 - The large amounts of biomass needed lead to expensive transportation costs.
 - Introducing variability (source location) into the process complicates supply chain logistics and affects the quality and yield of the conversion process.
 - Local assessment of feedstock availability needs to be performed on case by case basis to determine true level of feedstock availability.

CONTENT
- Supply chain structure
- Supply chain security
- Supply chain costs

OBJECTIVES
- Estimate feedstock costs and sensitivities
- Define supply chain logistics (to identify potential suppliers/partners, and infrastructure requirements)

OUTCOME
- Sustainable technical potential of harvesting residues in the EU in 2030 (dry mass)
Integration to existing Refineries

4refinery - Scenarios for integration of bio-liquids in existing REFINERY processes

European Union's Horizon 2020 research and innovation program, GA No. 727531
Alternative routes of bio-liquids in refinery

- Two primary conversion processes
 - Pyrolysis
 - HydroThermal Liquifaction (HTL)

- Four refining processes
 - Co-Fluidized Catalytic Cracking (Co-FCC)
 - Co-HydroTreating (Co-HT)
 - Co-HydroDeOxygenation (HDO)
 - HydroTreating (HT)

- Final products
 - Gasoline
 - Diesel
 - LPG
Upgrading: Optimising Oxygen for integration

Pyrolysis Liquid

- C_{daf}: 57.4 wt.%
- H_{daf}: 6.1 wt.
- O_{daf}: 36.5 wt.
- H₂O: 22.5 wt.

Stabilisation

- 350 kg water
- 150 kg gas
- 150 kg water

- Catalyst: Picula NiCuMo5P

Partial Deoxygenation

- Optimisation: H₂

Stabilized Deoxygenationed Oil

- C_{daf}: 86.1 wt.
- H_{daf}: 12.5 wt.
- O_{daf}: 1.2 wt.
- H₂O: 0.2 wt.
Techno-Economic Evaluation building MODELS for range of alternatives for Refinery integration
Techno-Economic Evaluation building MODELS for range of alternatives for Refinery integration

Stabilization model

Deoxygenation model

FCC models

Hydrotreater models

4refinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes
European Union’s Horizon 2020 research and innovation program, GA No. 727531
Feedstock/Location: Final selection of value chains

- **Forest residue:**
 - Northern Europe
 - Baltics
- **Eucalyptus:**
 - Southwestern Europe (Spain)
- **Straw:**
 - Central Europe
 - Denmark

4refinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes

European Union’s Horizon 2020 research and innovation program, GA No. 727531
Scenario analysis:
Ranking of Technical and Economic feasibility

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Post-treatment</th>
<th>Final refining</th>
<th>Raw material</th>
<th>Location</th>
<th>Technical feasibility</th>
<th>Economic feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolysis</td>
<td>Stabilisation</td>
<td>co-FCC</td>
<td>Forest residue</td>
<td>Baltics</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forest residue</td>
<td>Northern Europe</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eucalyptus</td>
<td>Spain</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Straw</td>
<td>Central Europe</td>
<td>---</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Straw</td>
<td>Denmark</td>
<td>---</td>
<td>+</td>
</tr>
<tr>
<td>Stabilisation/Deoxygenation</td>
<td>co-FCC</td>
<td>Forest residue</td>
<td>Baltics</td>
<td>++</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>co-FCC</td>
<td>Forest residue</td>
<td>Northern Europe</td>
<td>+++</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>co-HT</td>
<td>Forest residue</td>
<td>Baltics</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>co-HT</td>
<td>Forest residue</td>
<td>Northern Europe</td>
<td>-</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>co-HDO</td>
<td>Forest residue</td>
<td>Baltics</td>
<td>+++</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>co-HDO</td>
<td>Forest residue</td>
<td>Northern Europe</td>
<td>+++</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HTL</td>
<td>-</td>
<td>HT</td>
<td>Forest residue</td>
<td>-</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>not defined</td>
</tr>
</tbody>
</table>

4refinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes
European Union's Horizon 2020 research and innovation program, GA No. 727531
Evaluating Business Cases for scenarios

<table>
<thead>
<tr>
<th>Business Case</th>
<th>Raw Material</th>
<th>De-centralised Pre-processing</th>
<th>Refinery Processing</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC-1</td>
<td>Forest Residue</td>
<td>Fast Pyrolysis N plant(s)</td>
<td>FCC</td>
<td>Gasoline</td>
</tr>
<tr>
<td>HTL-1</td>
<td>Forest Residue</td>
<td>HTL 1 plant</td>
<td>HT</td>
<td>Diesel</td>
</tr>
<tr>
<td>HT-1</td>
<td>Forest Residue</td>
<td>Fast Pyrolysis N plant(s)</td>
<td>UPGR 1 plant</td>
<td>HT</td>
</tr>
</tbody>
</table>
Overall Conclusions (1)

- There is significant potential to make use of existing EU refineries.

- HTL less mature than FP – Still technical challenges to be tackled in the near-future.

- Co-HT less mature than co-FCC - but there are significant mid-to-long-term opportunities for co-HT:
 - The aviation and shipping industries present a longer-term market for co-processed fuels.
 - Support and initiative focused on SAF and sustainable shipping.
Overall Conclusions (2)

- Lignocellulosic biomass supply chains are relatively immature at present, though vary by feedstock and region.
 - EU has high feedstock potential but local level feedstock assessments will be needed to determine the true level of feedstock availability
 - Decentralised primary conversion steps can simplify the supply chain
- Competitive pricing is the main factor for the market integration of co-processed fuels

4refinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes
European Union's Horizon 2020 research and innovation program, GA No. 727531
Public acceptance - Overall Findings

- The public is in general found to be **supportive of biofuels**, although public knowledge and understanding of biofuels is found to be limited.

- Thus, **public opinion is vulnerable to dominant discourses and media frames** and can be **swayed** by these.

- **Knowledge is found to be a key element in the shaping of public opinion**, and awareness of unintended consequences of biofuel implementation diminishes public support.

- Some **potential drawbacks** related to biofuels, such as land requirements, iLUC (indirect land use change), and biodiversity impacts, **seem to be seldom understood by the public**, which raises the **importance of knowledge** increase and a **factual transparency** of these critical aspects.

- This becomes increasingly important as large scale production of biofuels are developed.

- Balanced and transparent reporting of involved risks and benefits will be key to continued **public support** and a **stable investment-environment**.
Final developments: Toolbox for scenario analysis

- Based on database and models developed in the 4Refinery Project
- To be accessible for scenario analysis
Acknowledgements to 4Refinery Consortium

Process Model and Techno-Economis

- Sustainability
- Liquefaction Processes
- Bio-crude
- Refinery Processing Technologies
- Advanced Biofuel

Public Acceptance
Business Models

4refinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes
European Union’s Horizon 2020 research and innovation program, GA No. 727531
Thank you for your attention!

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727531.