2<sup>nd</sup> Regional Exchange of Modelling Experts involved in the Development of Integrated National Energy and Climate Plans (NECPs) in South-Eastern European Countries

# Modelling of useful energy demand in households

MODEL MARKAL-MACEDONIA

MODELING TEAM OF THE RESEARCH CENTER FOR ENERGY AND SUSTAINABLE DEVELOPMENT – MACEDONIAN ACADEMY OF SCIENCES AND ARTS

PRESENTER: VERICA TASESKA-GJORGIVESKA

27 May 2020

# Outline



# Main Drivers

- Population
- > Number of person per household
- Number of dwellings
- Degree days: heating and cooling
- Base year demand based on SSO Energy balances and HH energy consumption survey
  - Allocation per type of household
  - Allocation per end-use
    - Hourly load profile to capture seasonal and intraday variations 9 time periods: Summer (day, night, peak), Winter (day, night, peak), Intermediate (day, night, peak)

# Type of households



# Useful energy demand

Base year estimation of all end-use demand

• Space heating (as an example)



Total useful energy for space heating per type of dwelling:

$$UE_{SH} = \sum_{All \ tch} UE_{SH(tch)}$$

# Useful energy demand projection

- I. Number of dwellings per type
  - Projection of total number of HH (Population and Number of persons per HH)
  - Allocation per dwelling type
    - Existing (old) HH (destruction rate)
    - New HH
      - Share of passive dwellings
- II. Useful energy demand space heating
  - Dwelling size per type of dwelling A (m<sup>2</sup>)
  - Fraction of dwelling size heated hs (%)
  - Heat demand per heated area *HDs* (kWh/m<sup>2</sup>)
  - Space heating demand per dwelling type UE<sub>SH</sub> (KWh)

#### $UE_{SH} = HDs \cdot \text{Number of dwellings} \cdot A \cdot hs$ (for each dwelling type)

## Technologies

| End - use     | Technology                                     | Fuel                                    | Type of dwelling |              |              |
|---------------|------------------------------------------------|-----------------------------------------|------------------|--------------|--------------|
|               |                                                |                                         | U-A              | U-SH         | R-SH         |
| Space Cooling | Heat Pumps                                     | Electricity                             | $\checkmark$     | $\checkmark$ | $\checkmark$ |
| Space Heating | Furnace                                        | Biomass, electricity, gas, LPG          | $\checkmark$     | $\checkmark$ | $\checkmark$ |
|               | Furnace (for space and water heating)          | Biomass, electricity, gas               | $\checkmark$     | $\checkmark$ | $\checkmark$ |
|               | Stove                                          | Biomass, pellets, electricity, gas, oil | $\checkmark$     | $\checkmark$ | $\checkmark$ |
|               | Heat pump                                      | Electricity                             | $\checkmark$     | $\checkmark$ | $\checkmark$ |
|               | District heating                               | Low-thermal heat (LTH)                  | $\checkmark$     |              |              |
|               | Solar collectors (for space and water heating) | Solar                                   |                  | $\checkmark$ | $\checkmark$ |
| Water heating | Boilers                                        | Electricity, gas, LTH, LPG              | $\checkmark$     | $\checkmark$ |              |
|               | Dual boilers                                   | Solar+ electricity                      |                  | $\checkmark$ | $\checkmark$ |
|               | Combined systems                               | District heating+ solar +electricity    | $\checkmark$     |              |              |
| Other         | Cloth drying machine                           | Electricity                             |                  | $\checkmark$ |              |
|               | Cloth washing machine                          | Electricity                             |                  | $\checkmark$ |              |
|               | Dish washing machine                           | Electricity                             | $\checkmark$     |              |              |
|               | Cooker                                         | Biomass, electricity, natural gas, LPG  | $\checkmark$     |              |              |
|               | Lighting                                       | Electricity                             |                  | $\checkmark$ |              |
|               | Refrigerator and Freezer                       | Electricity                             |                  | $\checkmark$ |              |

• Available as life extension of existing, base technologies, advanced technologies, best available technologies

# Modeling on local level



- Heating demand at the level od the City of Skopje
- Survey by households
- -Local pollutant assessed

#### Conclusions

- Long-term modeling of useful demand is data extensive process
- Reliable data sources are crucial
  - existing data
  - projections
- Good allocation of data is necessary
  - per type of households
  - per end-use, by technologies and by fuel
- Availability of diverse efficient technologies at demand side is important (as cost-effective options for selection by the model)