Regional Infrastructure Development Coordination

Infrastructure planning process – from national to regional

Nenad Šijaković, ECS Electricity Infrastructure Expert

Vienna, 30 November 2018
Process of ensuring secure, stable and optimal energy supply...

10y-50y ahead …… 3y-5y ahead D ahead – 1y ahead Intra-day

Long term planning measures:
 • System development planning
 • Infrastructure planning

Investment planning

Short term planning measures

Real time measures
Why is infrastructure an important area of ECS work...?

The „colourful“ world of an energy market requires...

Transparent Legal Framework
- 3rd Energy Package
- Network Codes
- Tariff Regimes
- Etc.

Functional Infrastructure
- Physical Connectivity
- Security of Supply
- N-1
- Different Sources and Routes

Market Integration
- Exchanges
- Spot
- Futures
- OTC

Market
- Traders
- Shippers
- Coupling

Alternative supply/route

Vienna, 30 November 2018
Regional system development and infrastructure planning…

Please note the difference between ENTSO-E and ENTSOG membership and processes

NDPs and FSs

- Detailed investigation of the AM status of the national network and necessary Investment needs…
 - PFS
 - FS
 - System studies
 - DSO NDPs
 - Stakeholder involvement

ENTSOs RgIP

- identification of the investments needs,
- preliminary network studies…
- identified projects that fit to the investment need

ENTSOs TYNDP

- assessments of the identified projects that fit to the investment needs

PECI/PMI selection

- Verification of the regional significance

Vienna, 30 November 2018
Infrastructure planning and realisation – NATIONAL APPROACH

1. National grid development studies, Investment plan
2. Feasibility Study for particular project (techno-economical analyses, preliminary design, financing, EIA)
3. Urban design, conditions for spatial planning
4. EIA – Environmental Impact Assessment Study
5. Basic Design, Permission for construction (land acquisition has to be started!)
6. Financing & Tendering
7. Construction
8. Licensing, operational consent (land acquisition has to be finished)!

5 years ... 20 years
Infrastructure planning – regional/pan-European ENTSO approach

- TYNDP – Ten Year Network Development Plan,
- 6 RgIPs – Regional Investment Plans,
- Adequacy Reports…
ENTSO-E project assessment process

Scenario
- Generation, consumption and exchange patterns
- Network simulation
- Project definition and technical capacity
- Market simulation

Project assessment
- Project costs
- CBA market indicators
- Residual impact indicators
- CBA network indicators

Vienna, 30 November 2018
2nd ENTSO-E CBA methodology with multi-criteria assessment
The Regulation, as adapted for the Energy Community, lays down rules for the timely development and interoperability of energy networks in the Energy Community, in order to:

- Verify priority (714/2009, 715/2009),
- Facilitate, and
- Financially assist...

...PRIORITY infrastructure projects in Energy Community: PECI/PMI – Projects of Energy Community Interest / Projects of Mutual Interest
PECI/PMI 2016 selection process

The selection of priority infrastructure projects is done in line with the EU Regulation 347/2013, as adapted for the Energy Community.

1. 1st PECI/PMI selection process was organized in 2016.
2. 2nd PECI/PMI selection process was organized in 2018.
3. Categories: energy infrastructure concerning electricity, gas and oil, as well as 1 thematic area covering smart grids.
4. Two Project Groups formed with the following objectives:
 - to list all projects eligible to be candidates for PECI / PMI status;
 - to assess all eligible projects, based on the proposed and accepted methodology, fulfilling the necessary criteria defined in the Regulation;
 - to adopt a preliminary PECI/PMI list, as well as to perform monitoring tasks accordingly.
PECI/PMI - Project assessment process

1. Questionnaires for submission of candidate projects
2. Eligibility check
3. Verification of project data
4. CBA
5. MCA
6. Relative ranking of projects

Vienna, 30 November 2018
Project categories – PECI/PMI

<table>
<thead>
<tr>
<th>General Criteria</th>
<th>Potential Benefits outweigh costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Involves at least 2 CPs or a CP and a MS</td>
</tr>
<tr>
<td></td>
<td>Located in one CP and has a Cross-border impact</td>
</tr>
<tr>
<td></td>
<td>Fits in the defined project categories</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific Criteria</th>
<th>Electricity</th>
<th>Market Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SoS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sustainability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td>Same + Competition</td>
</tr>
<tr>
<td></td>
<td>Smart Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oil</td>
<td>SoS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mitigation of Environmental Risk</td>
</tr>
</tbody>
</table>

PECI
- If involves a CP and a MS has to be PCI first in EU

PMI
- If involves a CP and a MS and is not PCI in the EU
PECI/PMI Project Assessment

1. Questionnaire drafting
2. Eligibility check and pre-screening
3. Project verification
 - Identification of complementarities, project clustering
 - Verification of project data

Projects proposed by project promoters

List of eligible candidate PECI/PMI

Candidate PECI/PMI projects
PECI/PMI Project Assessment

4 Economic Cost Benefit Analysis

- Input data for modelling
- Modelling assumptions
- Reference scenario
- Network modelling (ENTSO-E)
 - Network losses and Energy Not Supplied

Cost-benefit categories

- Market integration/price convergence
- Security of supply
- Change of CO2 emissions

Market modelling

Cost-Benefit Analysis

- Change in socio-economic welfare
- Project cost

Vienna, 30 November 2018
PECI/PMI Project Assessment

Multi-Criteria Assessment

Criteria
- Result of CBA
- Enhancement of competition
- Improvement of System Adequacy
- Project Maturity

Indicators
- Benefit/cost ratio
- Competition Enhancement Index
- System Adequacy Index
- Implementation Progress Indicator

Ability of each project to fulfil criterion
- Score 1 to 5

Weights
- 0.60
- 0.15
- 0.15
- 0.10

Total score of each proposed project

Relative ranking of proposed projects based on individual scores
El_xx: Project results

<table>
<thead>
<tr>
<th></th>
<th>System Adequacy Index (SAI)</th>
<th>Herfindahl-Hirschman-Index (HHI)</th>
<th>Benefit / Cost Ratio (B/C)</th>
<th>Implementation progress Indicator (IPI)</th>
<th>Total Score</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>10</td>
<td>5.54</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.33</td>
<td>3</td>
</tr>
<tr>
<td>(change of indicator)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAI and HHI values shown here represent the impact of a project (i.e. the difference without and with the individual project) in the countries on each end of the interconnector.
CBA Sensitivity Results

<table>
<thead>
<tr>
<th>NPV, m€</th>
<th>PINT</th>
<th>TOOT</th>
<th>Low CO₂</th>
<th>High demand</th>
<th>Low demand</th>
<th>Low gas</th>
<th>High gas</th>
<th>Deep iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.8</td>
<td>52.2</td>
<td>91.0</td>
<td>41.2</td>
<td>32.7</td>
<td>-121.8</td>
<td>197.1</td>
<td>-13.4</td>
<td></td>
</tr>
<tr>
<td>-118.2</td>
<td>-121.4</td>
<td>-119.6</td>
<td>-129.6</td>
<td>-123.5</td>
<td>-122.7</td>
<td>-119.6</td>
<td>-122.6</td>
<td></td>
</tr>
<tr>
<td>814.5</td>
<td>497.4</td>
<td>637.7</td>
<td>643.3</td>
<td>1 011.9</td>
<td>508.4</td>
<td>1 318.0</td>
<td>734.6</td>
<td></td>
</tr>
<tr>
<td>-45.5</td>
<td>-45.6</td>
<td>-44.7</td>
<td>-48.1</td>
<td>-45.6</td>
<td>-44.5</td>
<td>-50.6</td>
<td>-45.6</td>
<td></td>
</tr>
<tr>
<td>1 416.8</td>
<td>930.1</td>
<td>1 144.8</td>
<td>946.5</td>
<td>2 111.8</td>
<td>1 055.7</td>
<td>2 071.9</td>
<td>1 309.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benefit/cost ratio</th>
<th>PINT</th>
<th>TOOT</th>
<th>Low CO₂</th>
<th>High demand</th>
<th>Low demand</th>
<th>Low gas</th>
<th>High gas</th>
<th>Deep iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>0.5</td>
<td>1.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>3.1</td>
<td>3.7</td>
<td>3.8</td>
<td>5.3</td>
<td>3.2</td>
<td>6.7</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.5</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.6</td>
<td>-1.3</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>6.1</td>
<td>7.3</td>
<td>6.2</td>
<td>12.6</td>
<td>6.8</td>
<td>12.4</td>
<td>8.2</td>
<td></td>
</tr>
</tbody>
</table>

- **TOOT**: Take out one at a time
- **Low CO₂**: using half of the reference CO₂ price
- **High/low demand**: yearly growth rates are 0.5% higher/lower compared to REF in all modelled countries
- **Low gas/high gas**: assuming +/-30% natural gas price change in all modelled countries
- **Deep Iteration**: natural gas prices and quantities were iterated between the gas and electricity market models in several runs
EI_xx: Project results

- Positive NPV: +40m€
- PI index: 1.16

Table: NTC (MW)

<table>
<thead>
<tr>
<th>Origin</th>
<th>Destination</th>
<th>Year of commissioning</th>
<th>NTC: O->D (MW)</th>
<th>NTC: D->O (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>RS</td>
<td>2025</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>ME</td>
<td>IT</td>
<td>2024</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>RS</td>
<td>BA</td>
<td>2024</td>
<td>450</td>
<td>200</td>
</tr>
</tbody>
</table>

Chart:
- Welfare change
- Present value, m€
- NPV: 40
- OM cost
- Investment cost
- Welfare change
- EnS Transmission loss
- Benefit
- Cost

Vienna, 30 November 2018
Mid term projects (TYNDP) PECIs

1. Transbalkan corridor – phase 1
 • 400 kV OHL Resita (RO) – Pancevo (RS)
 • 400 kV OHL Kragujevac (RS) – Kraljevo (RS)
 • 400 kV OHL Obrenovac (RS) – B.Basta (RS)
 • 400 kV OHL Obrenovac (RS) – B.Basta (RS)
 • 400 kV OHL B.Basta (RS) – Pljevlja (ME) – Visegrad (BA)
 • 400 kV OHL Pljevlja (ME) – Lastva (ME)

2. 400 kV OHL Bitola (MK) – Elbasan (AL)

Mid to Long term projects:

3. 400 kV OHL Mukacheve (UA) – V.Kapusany (SK)
4. 400 kV OHL with B2B Substation, Isacea (RO) – Vulcanesti (MD) – Chisinau (MD)
5. Transbalkan corridor – phase 2
 • 400 kV OHL B. Basta (RS) – Kraljevo (RS)
 • 400 kV OHL Kraljevo (RS) – Nis (RS)
 • New interconnection between Serbia and Bulgaria
6. New interconnection between Serbia – Croatia
7. New interconnection between Serbia – Romania
8. 400 kV OHL B. Luka (BA) – Lika (HR)
Market talking to Network and Gas talking to Electricity – the future is now

Market results
- Balances,
- Exchanges per borders,
- Overall production per countries and fuel types

APP1
- Consumption
- Balances and exchanges with RoW
- Production per every modeled generator

APP2
- Network calculations

Adjusting results from market simulation model to the form of Network simulation model

Script

Vienna, 30 November 2018
Until ENTSOE TYNDP 2018, network and market modelling geographical scope, as well as scenarios and visions did not cover UA and MD (as well as other EU4Energy Members) which generated problems during project identification (not covered by TYNDP) and project assessment phase in EnC region.
PCI vs PECI/PMI vs PEPI - summary

PCIs, PECIs and PMIs assessments

EU MS 2017: used mostly ENTSO – E TYNDP assessment results, and agreed with the Commission the final PCI list

EnC 2016/2018: customised the prioritisation assessment

- used a similar methodology as EC/ENTSO-E
- enhanced with full CBA calculation, NPV distribution calculation, Multi-criteria assessment, ranking of projects by score/merit
- performed a sensitivity analysis instead of different scenarios

EnC 2018 additional features: Electricity and Gas Market models „talk“ to each other

PEPIs (Projects of Eastern Partnership Interest) – new category in the Eastern Partnership
Lessons Learned from TYNDP Appraisal Process: GNERC Case Study
Process timeline...

Process of ensuring secure, stable and optimal energy supply...

- **10y-50y ahead**
- **3y-5y ahead**
- **D ahead – 1y ahead**
- **Intra-day**

Long term planning measures:
- System development planning
- Infrastructure planning

Short term planning measures

Real time measures

Vienna, 30 November 2018
Regional system development and infrastructure planning…

Please note the difference between ENTSO-E and ENTSOG membership and processes

- Detailed investigation of the AM status of the national network and necessary investment needs…
 - PFS
 - FS
 - System studies
 - DSO NDPs
 - Stakeholder involvement

- ENTSOs RgIP
 - Identification of the investments needs,
 - Preliminary network studies…
 - Identified projects that fit to the investment need

- ENTSOs TYNDP
 - Assessments of the identified projects that fit to the investment needs

- PECI/PMI selection
 - Verification of the regional significance

Process timeline…
Traditional system development process

Security analysis

Security criteria met?

- No expansion
- Identification of first, broad group of solutions

Techno-economic assessment

Identification of second, restricted group of solutions

List of projects

Cost-benefit analysis

Traditional approach
1. **Ministry:** Energy Law needs to be amended in order to reflect the obligations derived from the Article 22 of the Directive 2009/73(72)/EC (gas and electricity TSOs to submit TYNDP with the other necessary documentation (TYNDP package – as defined under point 8.) to GNERC for approval, in line with the Article 22 of the Directive 2009/73(72)/EC).

Article 22, Directive 2009/73(72)/EC:

22.1 “Every year, transmission system operators shall submit to the regulatory authority a ten-year network development plan based on existing and forecast supply and demand after having consulted all the relevant stakeholders. That network development plan shall contain efficient measures in order to guarantee the adequacy of the system and the security of supply.”

22.2 “The ten-year network development plan shall in particular: (a) indicate to market participants the main transmission infrastructure that needs to be built or upgraded over the next ten years; (b) contain all the investments already decided and identify new investments which have to be executed in the next three years; and (c) provide for a time frame for all investment projects.”

22.3 “When elaborating the ten-year network development plan, the transmission system operator shall make reasonable assumptions about the evolution of the generation, supply, consumption and exchanges with other countries, taking into account investment plans for regional and Community-wide networks.”

22.6 “The regulatory authority shall monitor and evaluate the implementation of the ten-year network development plan.”
2. **GNERC:** To prepare the **Procedure that will describe the process of submission, assessment, approval and monitoring of the realisation of the TYNDP and 3 year Investment plan** (description of the process with the list of activities/obligations and deadlines).

3. **TSOs:** To be drafted by TSOs - **Project Assessment Methodology with the Book of Assumptions, or so called CBA methodology**, which will be used for the assessment of the major infrastructure projects, including economic and financial NPV, b/c ratio, internal rate of return, payback period. For the rest of the projects multi-criteria assessment with the ranking and prioritisation is necessary. To be approved by GNERC.

4. **TSOs:** **Final Investment Decision** necessary for the projects. **For the cross border projects legally binding bilateral agreement between neighboring systems** is necessary. To be sent to the GNERC as part of the overall **TYNDP package** as defined under bullet 8.

5. **GNERC:** To adopt risk assessment and mitigation measures methodology, defined in Regulation 347/2013, adapted and adopted by EnC, as “Methodology and the criteria used to evaluate investments in electricity and gas infrastructure projects and the higher risks incurred by them”. Before adoption to be sent to, and approved by ECRB.

6. **TSOs:** To introduce Market simulations into TYNDP preparation in order to mitigate uncertainties through better modelling and different scenarios (round year calculations). (avoiding underutilisation of the constructed network elements – risk mitigation)

7. **TSOs:** to introduce calculation of NPV, b/c ratio, internal rate of return, payback period (financial for the company, economical for the national level)
8. **TYNDP package** that should be prepared and sent by TSO to the NRA, consists of the following (also illustrated on the Figure):

- TYNDP together with 3-year Investment plan (Investment candidates must be covered/assessed through TYNDP).
- Project Assessment Methodology with the Book of Assumptions.
- FID - Final Investment Decision for each of the Investment item candidates.
- For the cross border projects legally binding bilateral agreement between neighboring systems is necessary (in order to mitigate the risk).
- Maturity/Priority/Limited resources – existence of the Feasibility Study with the appropriate CBA (NPV, b/c, IRR, payback period) for the major projects and Multi Criteria Ranking for all other projects.
- Financing plan proposal.
NTYNDP development process
Ancillary slides
Why is infrastructure important for the overall power system and market operation

The „colourful“ world of an energy market requires...
Incentives

In line with the Regulation, the Regulators shall examine the possibility of applying regulatory incentives to answer certain risks, specific to cross-border projects. Some examples include:

- WACC premium in justified cases
- Early cost recognition
- Shorter depreciation period
- Longer regulatory period
- Etc...
- EC Study on Incentives

If decided earlier, the incentives can be included in CBCA decision and the Business Plan when identifying the Financial Gap.
The basis for the current presentation:

- EXPLANATORY NOTES On the Implementation of EU Regulation 347/2013 - MC decision 2015/09
- ACER Recommendations and CBCA Decisions are available here:
- ACER Presentations are available here:
- ENTSO’s CBA Methodologies:
 http://www.entsog.eu/publications/cba-methodology#CBA-METHODOLOGIES
- Regulation 347/2013 and adapted MC Decision:
 https://www.energy-community.org/portal/page/portal/ENC_HOME/DOCS/3888285/24F6E4206F75620BE053C92FA8C088EE.PDF

Current presentation is a simple introduction – for in-depth studies ACER documents are very useful
Project categories – PECI/PMI

<table>
<thead>
<tr>
<th>General Criteria</th>
<th>Potential Benefits outweigh costs</th>
<th>Fits in the defined project categories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Involves at least 2 CPs or a CP and a MS</td>
<td>Located in one CP and has a Cross-border impact</td>
</tr>
<tr>
<td>Specific Criteria</td>
<td>Electricity</td>
<td>Market Integration</td>
</tr>
<tr>
<td></td>
<td>SoS</td>
<td>Sustainability</td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td>Same + Competition</td>
</tr>
<tr>
<td></td>
<td>Smart Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oil</td>
<td>SoS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mitigation of Environmental Risk</td>
</tr>
</tbody>
</table>

PECI

If involves a CP and a MS has to be PCI first in EU

PMI

If involves a CP and a MS and is not PCI in the EU

Skopje, 29th May 2018
PLIMA
ENERGY COMMUNITY SECRETARIAT INFRASTRUCTURE TRANSPARENCY PLATFORM AND PROJECT MONITORING TOOL

Nenad Šijaković, ECS Electricity Infrastructure Expert
According to the Article 18 of adopted Regulation 347/2013 (MC Decision D/2015/09/MC-EnC):

The Energy Community Secretariat shall establish, by six months after the date of adoption of the first Energy Community list (14th April 2017), an infrastructure transparency platform easily accessible to the general public, including via the internet. This platform shall contain the following information:

- general, updated information, including geographic information, for each project of Energy Community interest;
- the implementation plan as set out in Article 5(1) for each project of Energy Community interest;
- the main results of the cost-benefit analysis on the basis of the methodology drawn up pursuant Article 11 for the projects of Energy Community interest concerned, except for any commercially sensitive information;
- the Energy Community list;
- the funds allocated and disbursed by the Union for each project of Energy Community interest.
PLIMA – Project Library and Interactive Map Application

PLIMA – Project Library and Interactive Map Application provides up to date information on the geographic location for each of the projects listed as PECI/PMI, as well as other relevant project data, using user friendly and interactive approach, and represents:

- **Infrastructure Transparency Platform**, and
- **Project Monitoring Tool**

PLIMA is a web based application developed using PHP/MySql, and is currently being migrated to the Magnolia-Content Management System), with number of embedded Google map APIs and different Google charts, which ensures high level of cost-effectives and its performance.
PLIMA – Project Library and Interactive Map Application

PLIMA possess the following functionalities (1):

1. PECI/PMI projects presentation using Interactive map approach (using Google map APIs),

2. Project library, dynamically connected to the GIS based map, provides up to date information on the geographic location for each of the projects listed as PECI/PMI as well as other relevant project data, using user friendly and interactive user interface. Projects covered by PLIMA are divided into the following categories:
 a) Electricity transmission,
 b) Electricity storage,
 c) Smart grid,
 d) Gas transmission,
 e) Gas storage,
 f) LNG, and
 g) Oil.
PLIMA – Project Library and Interactive Map Application

3. Possibility to list every project category with pinpoint function connected with Interactive map interface.

4. Project detailed page, with all necessary project data, images, charts as well as predefined, Data Base backed up, interactive Gantt Diagram with predefined project phases, which is used for the project monitoring purposes (each phase is described by start date, end date, duration, percent done…).

5. Overall projects Monitoring Tool with appropriate charts and other relevant statistical data.
Other existing solutions

EC solution

ENTSO/E solution

http://tyndp.entsoe.eu/map/