

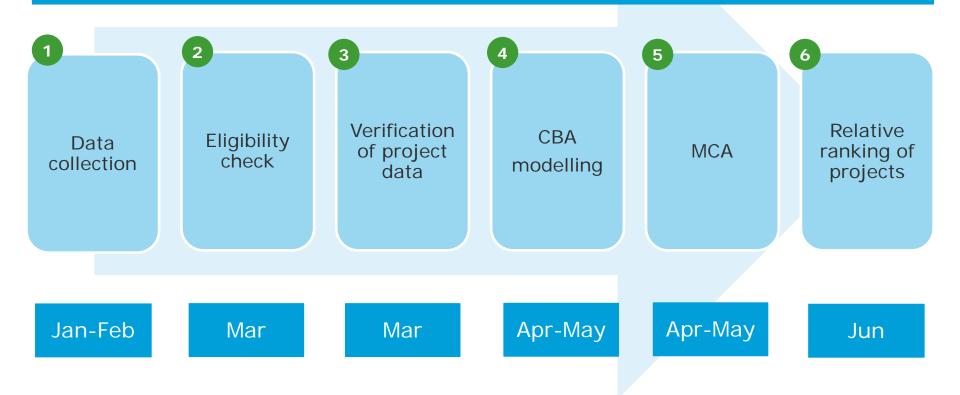
Selection of Projects of Energy Community Interest (PECIs) and Projects of Mutual Interest (PMIs)

1st Meeting of the Electricity and Gas Groups
Proposed Assessment Methodology and Data collection

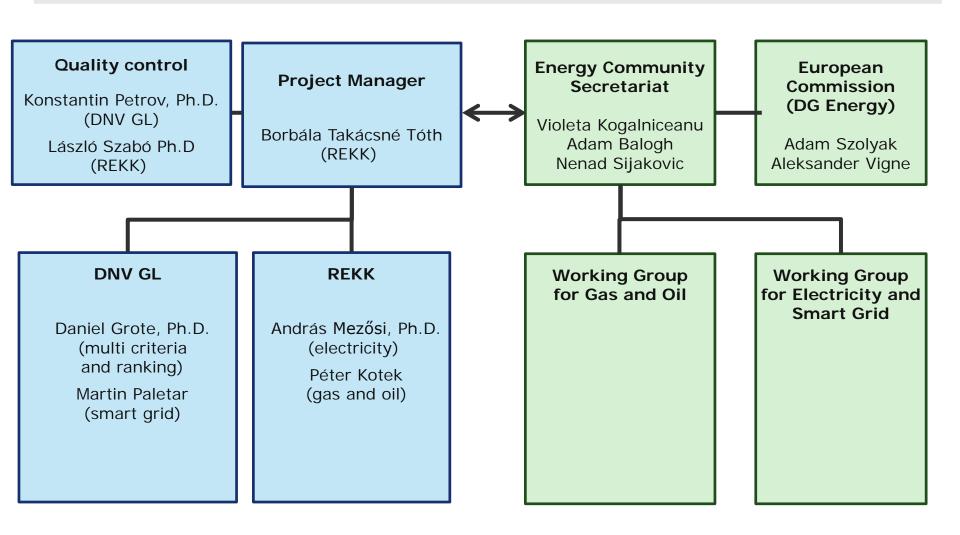
Presentation REKK / DNV GL

Vienna 30.01.2020

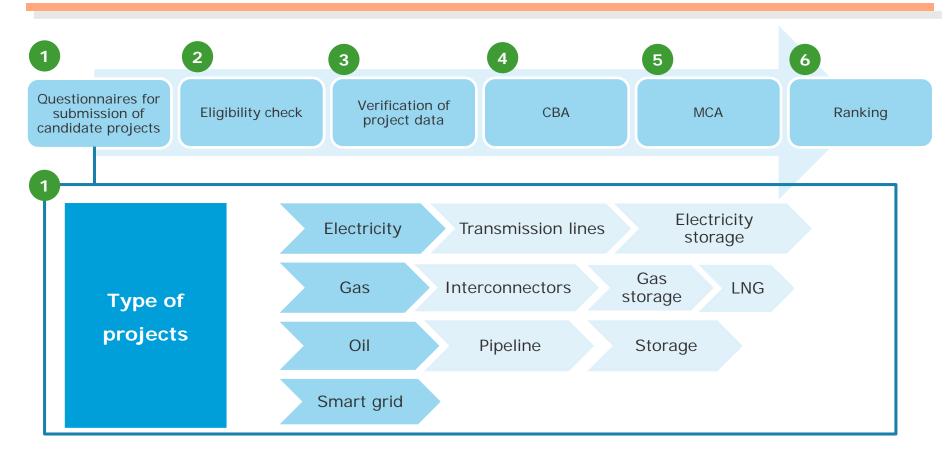
Agenda


- 1. Overview of general project assessment methodology
- 2. Proposed changes in the methodology
- 3. Data collection: Questionnaires
- 4. Scenarios & Country specific data

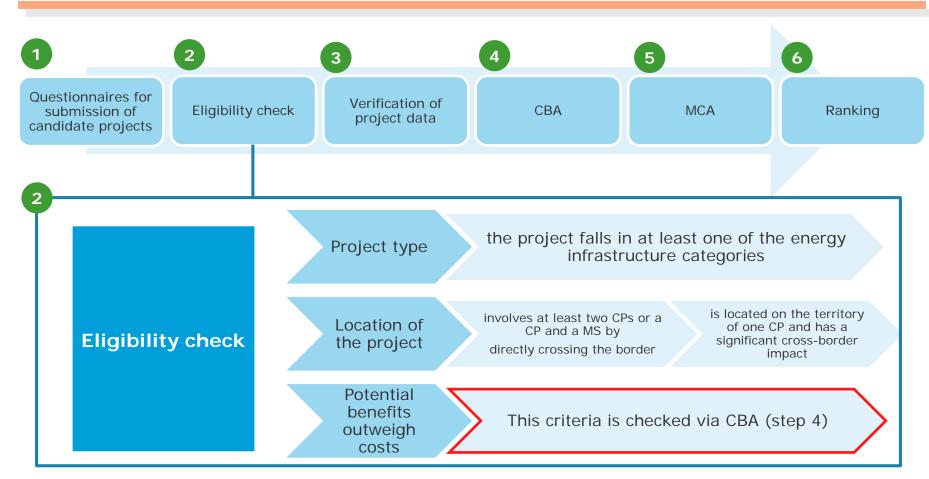
30 January 2020


Project Workflow

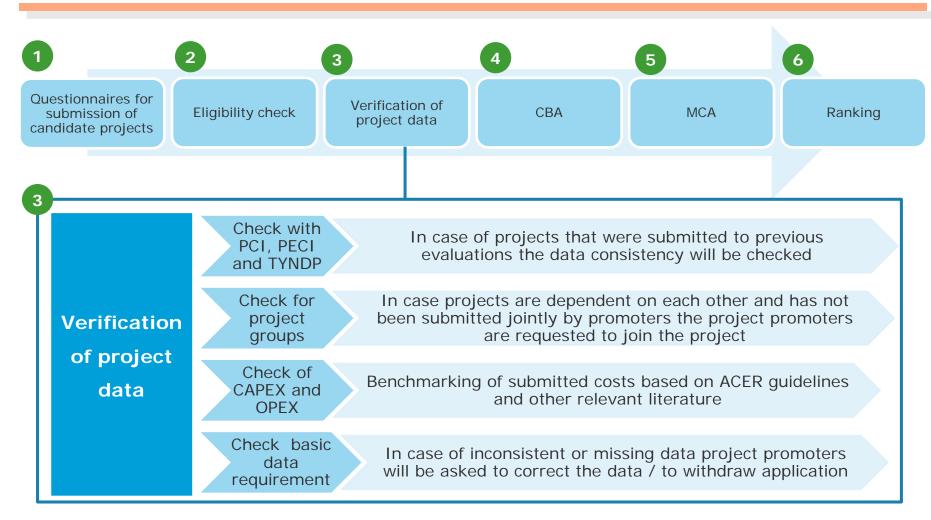
Project Objective: To assess the candidate projects for electricity, gas and oil infrastructure, as well as for smart grids, in order to be able to identify those which would bring the largest benefits for the Energy Community



Project Team


Step 1 – Questionnaires for Submissions of Candidate Projects

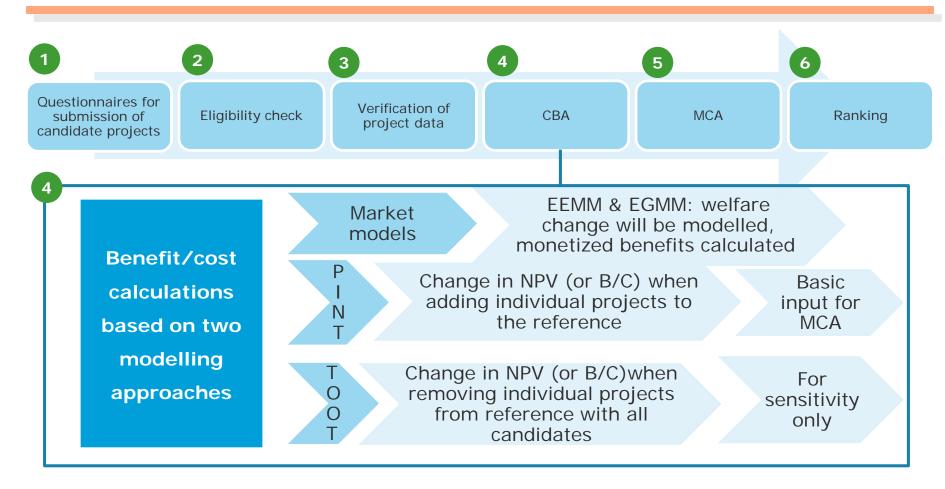
- Interconnector projects on the two side of the borders can only be modelled together
- Project promoters are hence requested to submit proposals jointly for the same project
- Without basic project data submission is not accepted


Step 2 – Eligibility Check

All eligible projects will be evaluated according to the same approach. The project label will be decided on in the final step of the decision making: selected projects will qualify as a PECI or as a Project of Mutual interest. (Art 4 para 5 and 6.)

Step 3 – Verification of Project Data

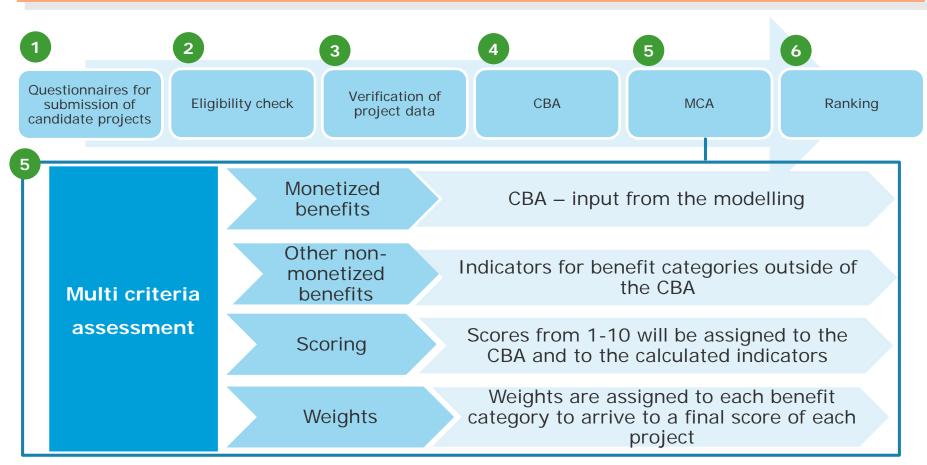
Key data needed for project assessment: capacity, cost, commissioning date


Step 4 – Cost-Benefit Analysis

An investment project would be beneficial to the investigated stakeholder group if the cost-benefit analysis provides a positive net benefit (i.e. B/C>1)

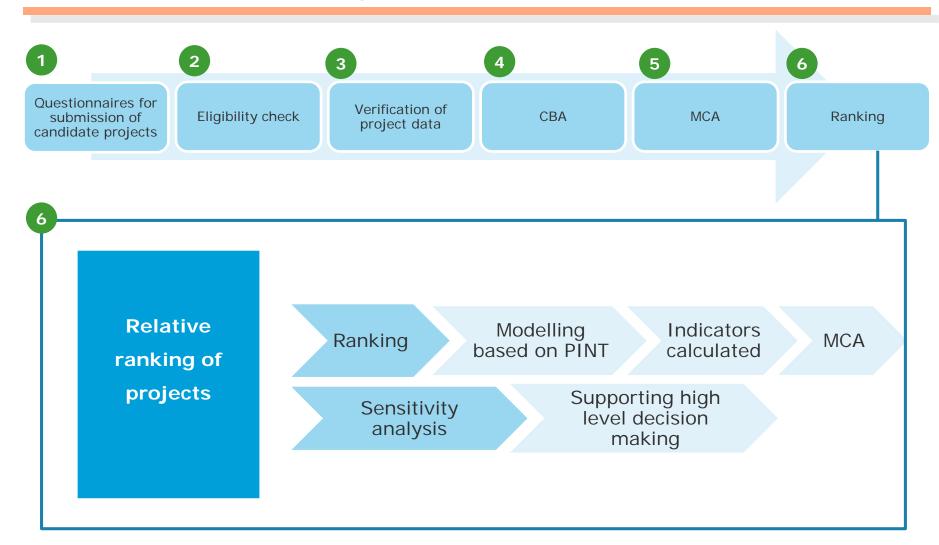
- Costs and benefits of a project are assessed in the economic analysis by the Net Present Value (NPV) OR Benefit/Cost (B/C) ratio
- Calculation of the Net Present Value (NPV) and Benefit/Cost ratio of economic costs and benefits includes
 - the monetary costs and benefits of the investor
 - the costs and benefits to other stakeholders and the society as a whole affected by an investment project
- (Economic) NPV is the difference between the discounted total social benefits and costs
- Economic assessment of a project is positive if the NPV is positive (NPV > 0) OR if the B/C>1

Step 4 – Cost-Benefit Analysis



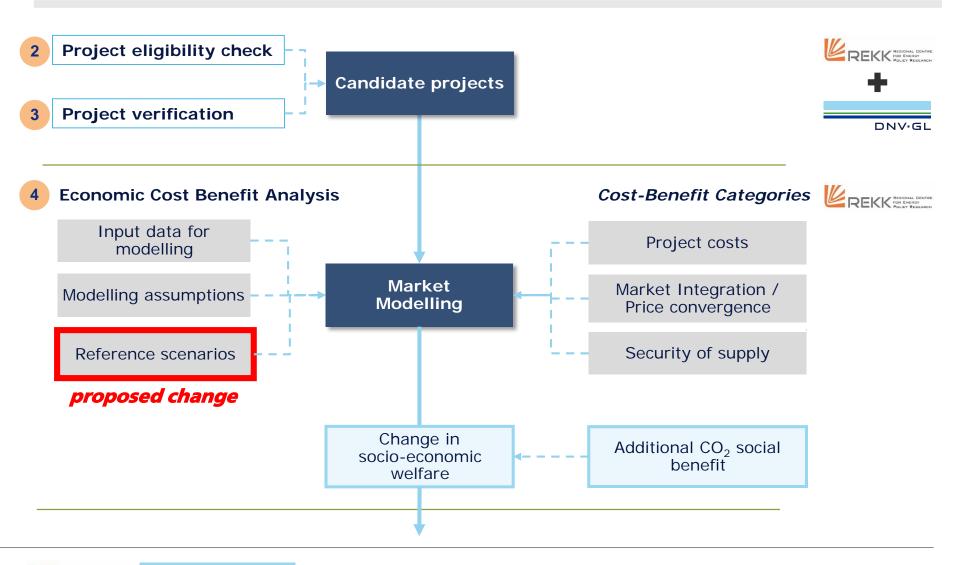
Cost-benefit analysis of the project: social NPV of the project calculated for the region

- PINT: put-in-one-at-a-time modelling
- TOOT: take-out-one-at-a-time modelling

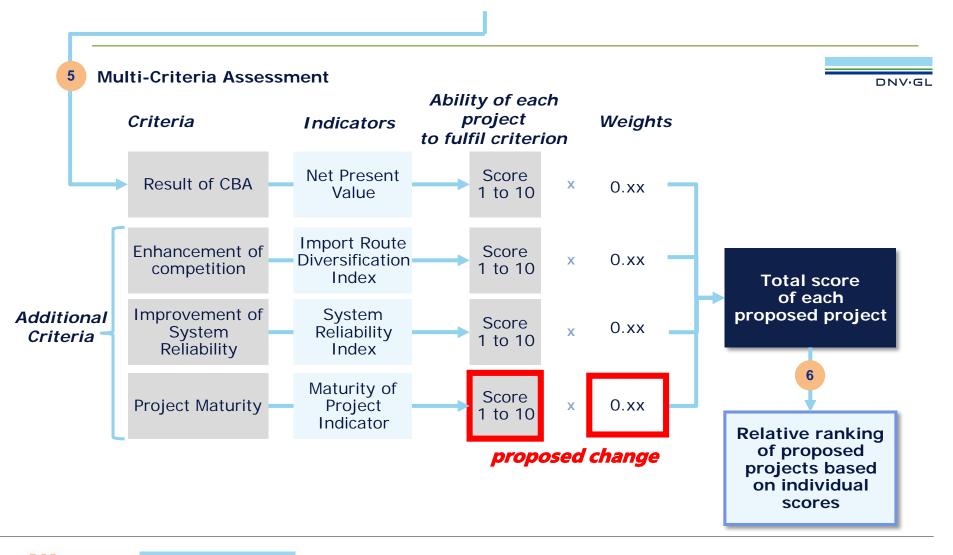

Step 5 – Multi Criteria Assessment

- MCA allows integration of monetized benefits (result of CBA) with non-monetized benefits (assessment of additional quantitative and qualitative criteria)
- Outcome will be a relative ranking of all eligible projects (separate for electricity and gas projects)

Step 6 – Relative Ranking


Agenda

- 1. Overview of general project assessment methodology
- 2. Proposed changes in the methodology
- 3. Data collection: Questionnaires
- 4. Scenarios & Country specific data

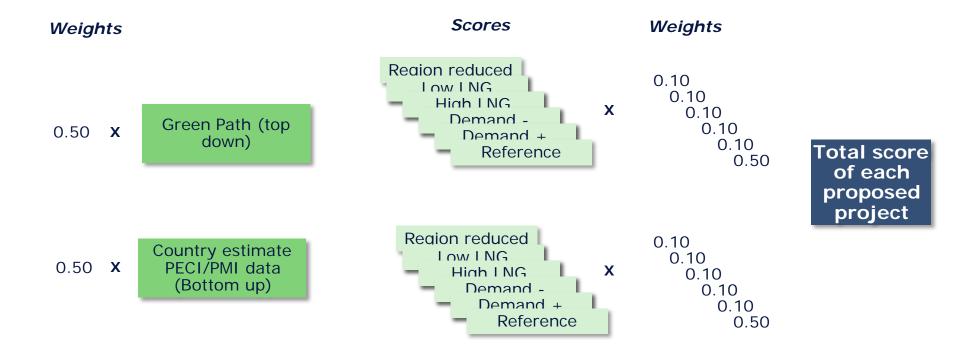

12

Overview of the Project Assessment Methodology for Gas

Overview of the Project Assessment Methodology for Gas

Scenario assessment - What for?

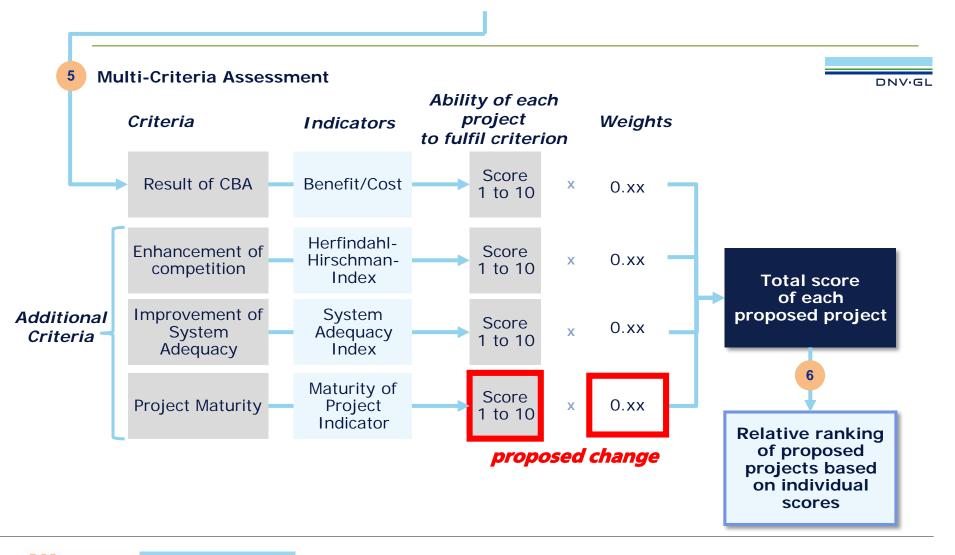
- To reflect that there are serious uncertainties in the future energy system developments
 - Technology
 - Policy
- A well defined shared vision is needed to design the scenarios
- To help decision making on the projects: if they perform well in all scenarios, no doubt that they are needed



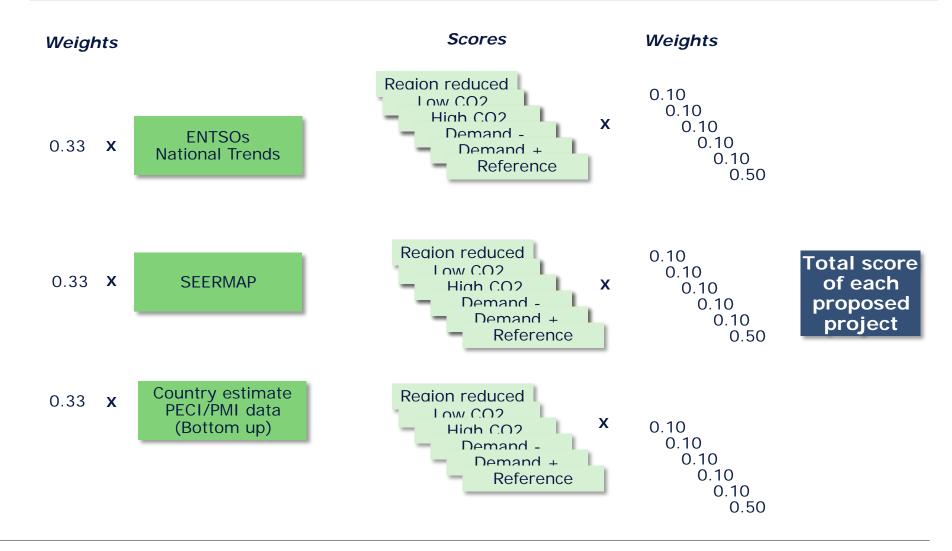
Challenges for the PECI/PMI scenario assessment

- No top-down consistent modelling exists for the region that could provide us the input for the scenarios (Primes/ Times will come, but not available at the moment)
- ENTSOs storylines do not fit the Balcans (Distributed Energy and Global Ambition no GAS PECI shall be submitted)
- This project runs for 6 month and there is no time devoted for detailed story line building
- Data collection for even a "best estimate" scenario was a challange in the previous rounds – therefore we used more sensitivities on demand estimates
- GOAL: Try to assemble one BAU and additionally a more ambitious Green scenario
- What are the options?
 - Ask for input data on selected scenarios of the ENTSOs in progress
 - Use available latest TYNDP 2018 data on EU and those contracted parties that are included
 - Try to fill up the gaps with primary data collection from the Groups

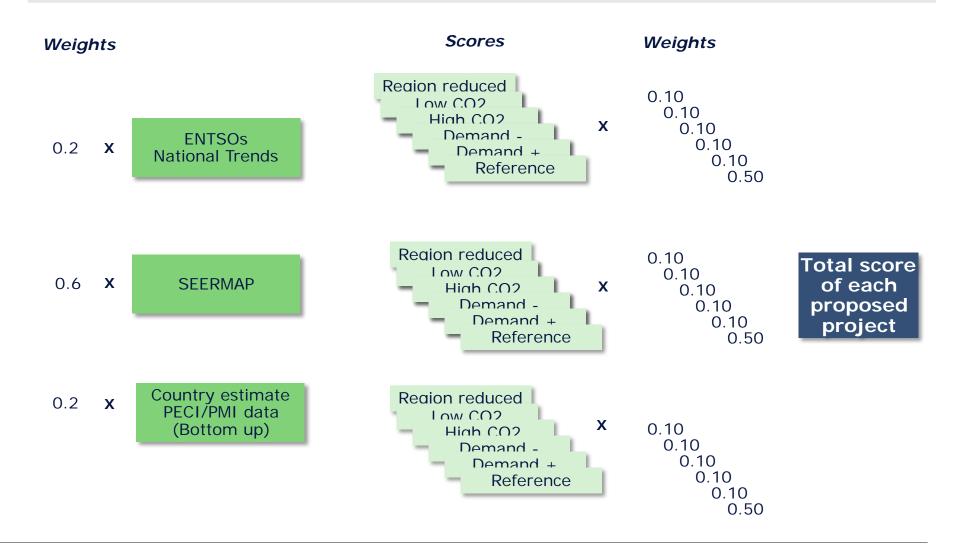
Scenario assessment - GAS



Overview of the Project Assessment Methodology for Electricity

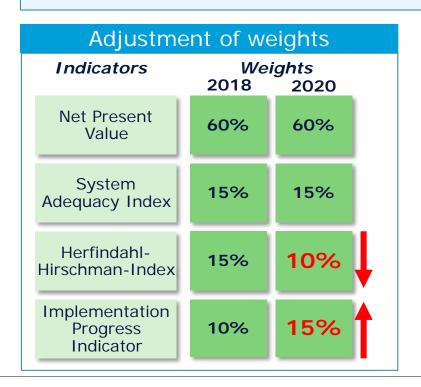


Overview of the Project Assessment Methodology for Electricity



Scenario assessment - electricity

Scenario assessment - electricity



Adjustment to the Assessment of Project Maturity for Electricity (I)

Observation that several investment projects have been proposed for many years, but not made significant progress in implementation

- Hardly any PECI candidate project assessed in 2016 and/or 2018 has made significant progress (although slightly different evaluation of maturity in each assessment comparison)
- Many projects have dropped out altogether without any progress

Adjustment of scoring

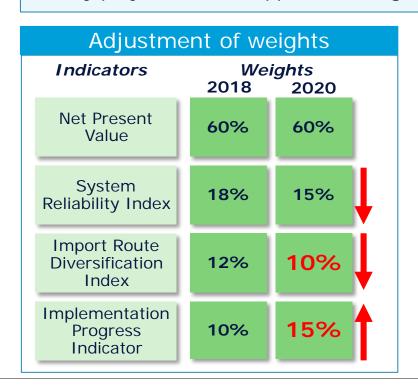
- A score of 1 is assigned for each project implementation step already undertaken by a project in 2020 (i.e. IPI score between 1-10)
- IPI score is reduced by 10 points in case no progress is observed compared to previous assessment in 2018

Adjustment to the Assessment of Project Maturity for Electricity (II)

Example Calculation 2018 Assessment

Project		Indica (Sco				Weig	Total	Donking		
	B/C Ratio	SAI	нні	IPI	B/C Ratio	SAI	нні	IPI	Score	Ranking
P 1	10	1	5.78	1	60%	15%	15%	10%	7.12	2
P 2	1	3.77	1	2	60%	15%	15%	10%	1.52	4
P 3	4.6	10	10	5	60%	15%	15%	10%	6.26	3
P 4	8.6	6.5	4.9	5	60%	15%	15%	10%	7.35	1

Example Calculation 2020 Assessment (Proposal)


Project			ators res)			Weig	Total	Ranking		
	B/C Ratio	SAI	нні	IPI	B/C Ratio	SAI	нні	IPI	Score	Karikirig
P 5	10	1	5.78	1	60%	15%	<mark>10%</mark>	<mark>15%</mark>	6.88	1
P 6	1	3.77	1	2	60%	15%	<mark>10%</mark>	<mark>15%</mark>	1.57	4
P 7	4.6	10	10	5	60%	15%	<mark>10%</mark>	<mark>15%</mark>	6.01	2
P 4	8.6	6.5	4.9	<mark>-5</mark>	60%	15%	<mark>10%</mark>	15%	5.86	<mark>3</mark>

Adjustment to the Assessment of Project Maturity for Gas (I)

Observation that several investment projects have been proposed for many years, but not made significant progress in implementation

- Hardly any PECI candidate project assessed in 2016 and/or 2018 has made significant progress (although slightly different evaluation of maturity in each assessment comparison)
- Many projects have dropped out altogether without any progress

Adjustment of scoring

- A score of 1 is assigned for each project implementation step already undertaken by a project in 2020 (i.e. IPI score between 1-10)
- IPI score is reduced by 10 points in case no progress is observed compared to previous assessment in 2018

Adjustment to the Assessment of Project Maturity for Gas (II)

Example Calculation 2018 Assessment

Project		Indica (Sco				Weig	Total	Donking		
	B/C Ratio	SRI	IRD	IPI	B/C Ratio	SRI	IRD	IPI	Score	Ranking
P 1	10	1	5.78	2	60%	18%	12%	10%	7.07	1
P 2	1	3.77	1	3	60%	18%	12%	10%	1.7	4
P 3	5.6	10	10	4	60%	18%	12%	10%	6.76	3
P 4	7.6	6.5	6.9	3	60%	18%	12%	10%	6.84	2

Example Calculation 2020 Assessment (Proposal)

Project			ators res)			Wei	Total	Donking		
	B/C Ratio	SRI	IRD	IPI	B/C Ratio	SRI	IRD	IPI	Score	Ranking
P 5	10	1	5.78	2	60%	<mark>15%</mark>	<mark>10%</mark>	<mark>15%</mark>	7.03	1
P 6	1	3.77	1	3	60%	<mark>15%</mark>	<mark>10%</mark>	<mark>15%</mark>	1.72	4
P 7	5.6	10	10	4	60%	<mark>15%</mark>	<mark>10%</mark>	<mark>15%</mark>	6.46	2
P 4	7.6	6.5	6.9	<mark>-7</mark>	60%	15%	10%	15%	5.16	<mark>3</mark>

Agenda

- 1. Overview of general project assessment methodology
- 2. Proposed changes in the methodology
- 3. Data collection: Questionnaires
- 4. Scenarios & Country specific data

26

Assessment of Smart Grid Projects – Eligibility Check (I)

In order to be considered as potential PECIs/PMIs, smart grid projects need to meet a number of criteria (Regulation 347/2013 as adopted for the Energy Community)

Cross-border project (directly crossing border) or Has significant cross-border impact, which is given if project: Is implemented at a voltage level of 10kV or more **Eligibility** Involves at least two Contracting Parties Criteria Involves transmission and distribution system operators Covers at least 50,000 users (producers, consumers and prosumers) Focuses on a consumption area of at least 300 GWh/year, of which at least 20% originate from non-dispatchable resources

27

Assessment of Smart Grid Projects – Eligibility Check (II)

Priority thematic area:

→ efficiently integrate behaviour and actions of all users connected to electricity network, in particular generation of large amounts of electricity from renewable or distributed energy sources and demand response by consumers

Project also needs to show significant contribution to <u>all</u> of the following specific criteria:

- 1 Integration and involvement of network users with new technical requirements with regard to their electricity supply and demand
- 2 Efficiency and interoperability of electricity transmission and distribution in day-to-day network operation
- 3 Network security, system control and quality of supply
- 4 Optimized planning of future cost-efficient network investments
- 5 Market functioning and customer services
- 6 Involvement of users in the management of their energy usage

Assessment of Smart Grid Projects – Proposed Methodology

Proposed assessment methodology is based on:

- Regulation 347/2013 as adopted for the Energy Community
- the assessment framework of the EU Joint Research Center (JRC), applied for identification of Projects of Common Interest (PCIs) on EU level
- the approach of our previous PECI/PMI assessments

Evaluation of Key Performance Indicators (KPIs) reflecting various benefits associated with smart grid projects derived from evaluation criteria of Regulation 347/2013

- KPIs will cover the following dimensions:
 - level of sustainability
 (e.g. reduction of CO₂ emissions and environmental impact)
 - capacity of transmission and distribution grids
 (e.g. facilitate integration of renewables and reduction of congestion)
 - network connectivity (e.g. enabling time-dependent tariffs and charges)
 - security and quality of supply (e.g. higher reserve margin and reduction of interruptions)
 - efficiency and service quality (e.g. reduction of network losses, enabling demand side participation, improvement of energy efficiency)
 - contribution to cross-border electricity markets (e.g. alleviate loop-flows and increase interconnection capacities)
- based on specific smart grid questionnaire; up to project promoters to build a convincing case for their project according to specific criteria set by Regulation 347/2013 and availability of data

Assessment of Oil Projects – eligibility check

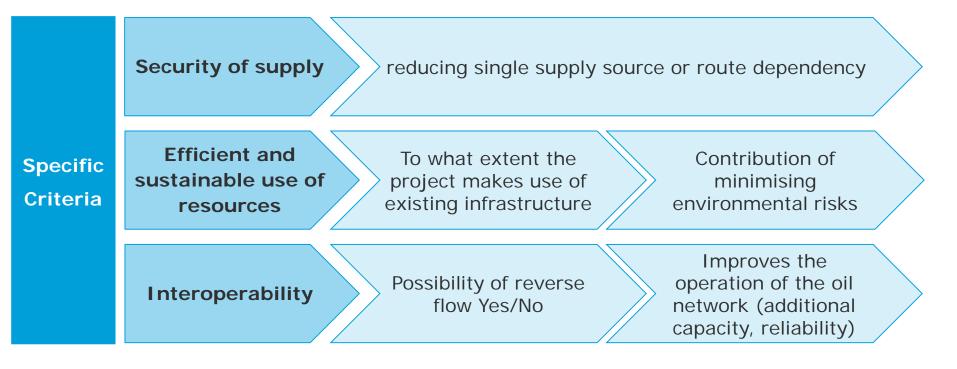
Evaluation

- The proposed methodology is based on our previous PECI project assessment and on the ministerial decision 2015/09/MC-EnC adopting 347/2013 Regulation
- We suggest to follow this approach and evaluate oil projects talking into account eligibility and specific criteria

Eligible project categories

ANNEX I. (3)

- 1. Pipelines used to transport crude oil
- 2. Pumping stations and storage facilities necessary for the operation of crude oil pipelines;
- 3. Any equipment or installation essential for the system in question to operate properly, securely and efficiently, including protection, monitoring and control systems and reverse flow devices


Geographical eligibility criteria

Art. 4. 1(c)

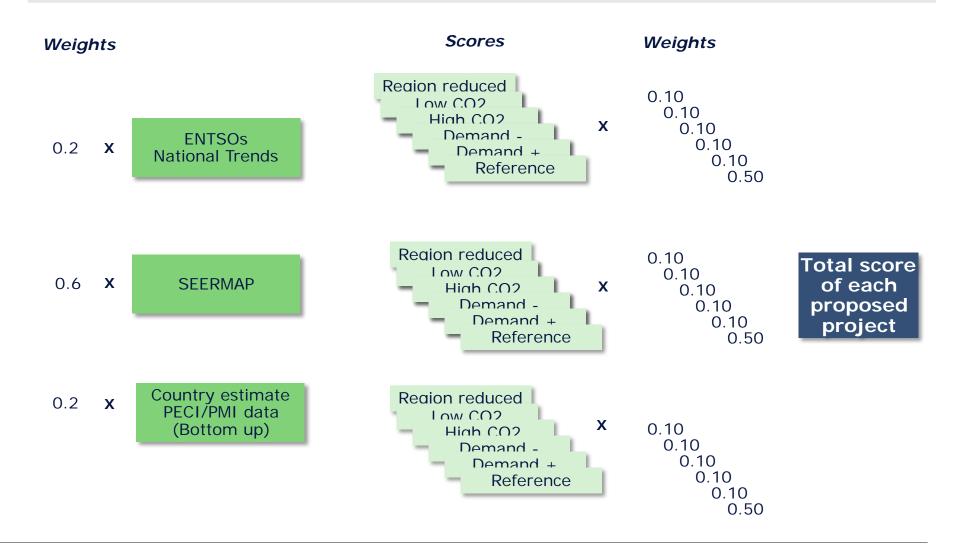
- 1. Directly crossing the border: involves at least two CPs; or a CP and an MS or more
- 2. Located in one CP only, but has a significant cross-border impact

Assessment of Oil Projects

Art. 4.2. (d) and ANNEX III (5) of Ministerial Decision 2015/09/MC-EnC adopting 347/2013 Regulation

Introduction of the questionnaire

Electricity transmission


Agenda

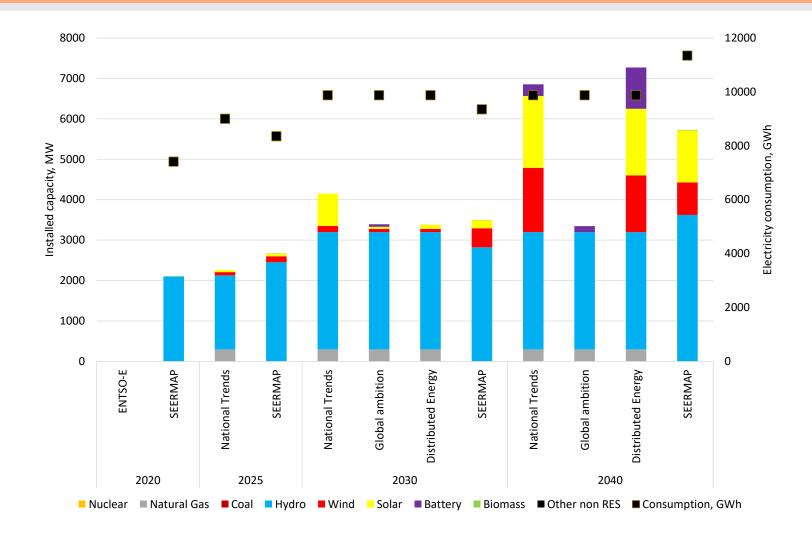
- 1. Overview of general project assessment methodology
- 2. Proposed changes in the methodology
- 3. Data collection: Questionnaires
- 4. Scenarios & Country specific data

30 January 2020

Scenario assessment - electricity

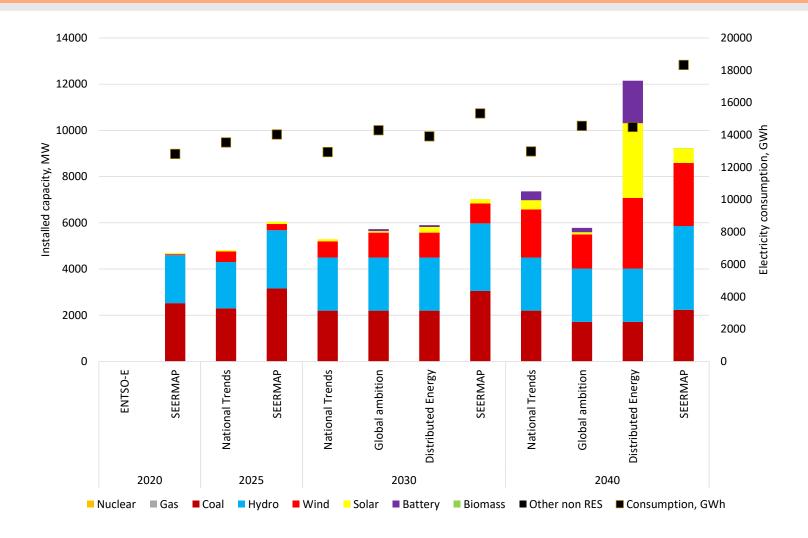
Scenario definitions

- Installed generation capacities and yearly electricity consumption -> two key input data
- Four main data source:
 - ENTSOs: three different ENTSOs vision
 - National Trends (NT) is the central scenario based on draft NECPs
 - Global Ambition (GA) is a scenario compliant with the 1.5° C target. It looks at a future that is led by development in centralised generation.
 - Distributed Energy (DE) is a scenario compliant with the 1.5° C target. It takes a de-centralised approach to the energy transition.
 - SEERMAP: South East European Electricity Roadmap -> some of the input data are updated
 - PEPI data: Project of Easten Partnership Countries
 - Country data: Bottom-up input data based on primary data collection from the
 Group

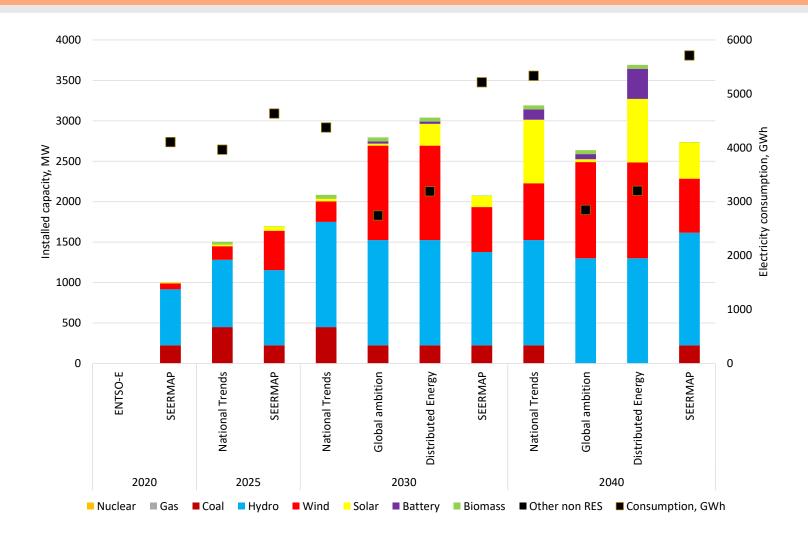


Data limitation

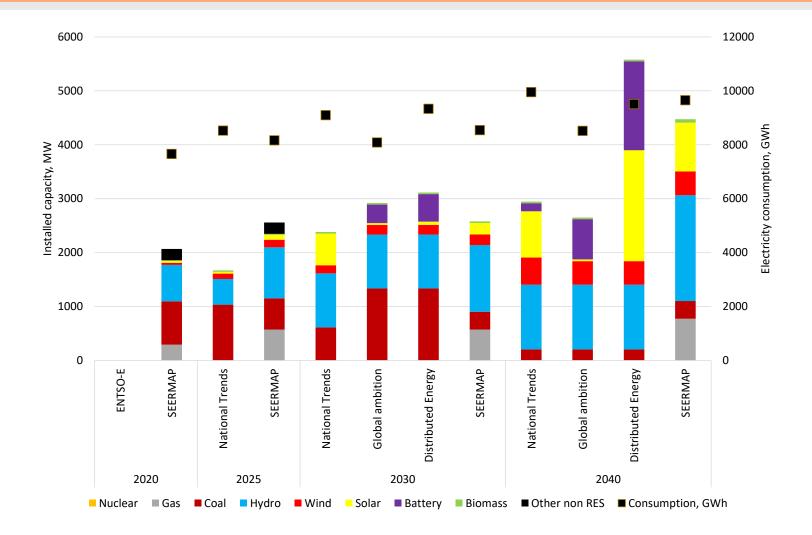
- ENTSOe
 - ENTSOs data only from 2025
 - No data for GE, KO, MD and UA_E
 - Only until 2040
- SEERMAP:
 - GE, MD and UA are not covered -> for these countries PEP data can be used



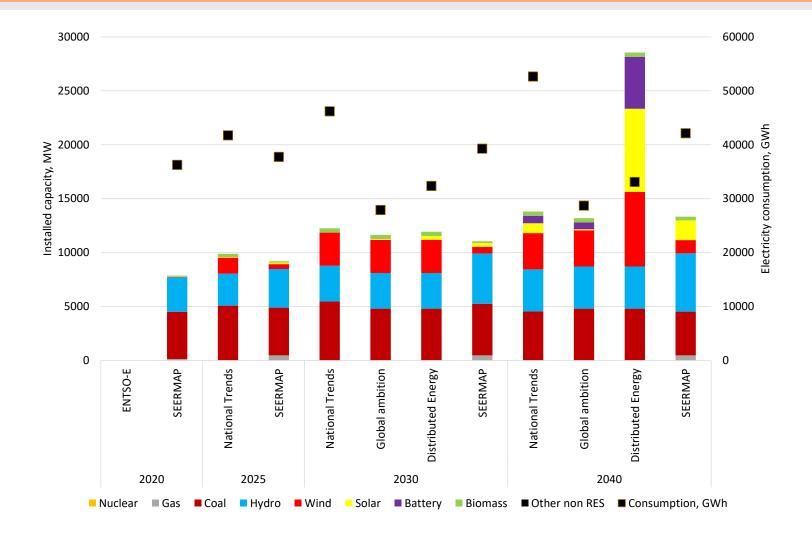
Albania



Bosnia and Herzegovina



Montenegro



North Macedonia

Serbia

Input data for modelling

Category	Data Unit	Source		
Consumption	Annual Quantity Monthly distribution (% of annual quantity)	Questionnaires / ENTSOG		
Production	Minimum and maximum production	Questionnaires / ENTSOG		
Pipeline infrastructures	Daily maximum flow	ENTSO-G TYNDP 2018		
Storage infrastructures	Injection, withdrawal, working gas capacity	GSE, ENTSO-G TYNDP 2018		
LNG infrastructures	Capacity	GIE 2019, GIIGNL Annual Report 2019		
LTC contracts	Yearly minimum maximum quantity, Seasonal minimum and maximum quantity	Gazprom, National Regulators Annual reports, Platts, Cedigaz (2019)		
Storage and transmission tariffs	€/MWh	TSO, SSO webpages (2019)		
LNG tariffs	€/MWh	CEER 2017		

Pipeline assumptions

- Use ENTSOG Low infra level (pages 7-8 of <u>https://www.entsog.eu/sites/default/files/2019-</u> <u>02/entsog_tyndp_2018_System_Assessment_web.pdf</u>)
- Add the so-called High Level Group Projects:
 - CESEC: all CESEC priority projects
 - TAP with 8 bcm to Italy, 1 bcm to Bulgaria, 1 bcm to Greece
- In addition:
 - Shannon LNG Terminal and connecting pipeline (IE)
 - NS2 with EUGAL
 - TS2 with BG-RS-HU connection
- Allowing for UA transit in function of NS2 and TS2 routes

Gas demand, TWh/year

		2020		2025				
	National	plans	ENTSOs	REKK	National	plans	ENTSOs	REKK
	Reference	"Green Sc."			Reference	"Green Sc."		
AL			-	3.1			-	6.1
BA	1.5	2.0	1.8	2.2	1.5147	2.2	3.7	3.3
GE			-	29.6			-	32.9
KO*			-	0.0			-	0.0
MD			-	11.0			-	12.0
ME	0.1		-	0.0	1.7		-	0.0
MK	2.3	2.4	0.8	7.3	2.9	6.0	1.2	16.0
RS	17.9	16.5	24.0	24.0	20.9	19.3	28.0	28.0
UA			-	355.9			-	368.0

		2030		2040				
	National p	lans	ENTSOs	REKK	National	plans	ENTSOs	REKK
	Reference	"Green Sc."			Reference	"Green Sc."		
AL			-	11.0			-	19.0
ВА	1.5	2.6	5.9	6.1	-	-	13.1	7.4
GE			-	36.4			-	44.3
KO*			-	0.0			-	0.0
MD			-	13.0			-	14.0
ME	3.0		-	0.0	6.6		-	0.0
MK	2.9	5.2	2.0	16.5	3.8	5.3	4.3	18.4
RS	24.3	22.9	32.0	32.0	-		32.0	32.0
UA			-	371.0			-	393.8

Gas production, TWh/year

	Yearly gas production (TWh/y)											
	2020			2025		2030			2040			
	Nation al plans	ENTSO G	REKK	Nation al plans	ENTSO G	REKK	Nation al plans	ENTSO G	REKK	Nation al plans	ENTSO G	REKK
AL		-	0.0		-	0.0		-	0.0		-	0.0
BA		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0
GE		-	0.2		-	0.4		-	0.5		-	0.8
KO*		-	0.0		-	0.0		-	0.0		-	0.0
MD		-	0.0		-	0.0		-	0.0		-	0.0
ME		-	0.0		-	0.0		-	0.0		-	0.0
MK		0.0	0.0	<u> </u>	0.0	0.0			0.0	<u> </u>	0.0	0.0
RS		5.4	5.4		3.7	2.8		2.8	1.9		1.9	0.0
UA	223.7	-	323.5	268.7	-	344.0	330.2	-	348.5		_	348.5

Assumptions on LTCs

 Current supply contracts in the EnC CPs are not expected to expire, but they will be recontracted.

Long term supply and transit contracts									
	Supply from	ACQ	Price in 2020	contract expiry	Contract route				
		TWh/year	€/MWh						
Bosnia	Russia	1.66	?	yearly	UA-HU-RS-BA				
Georgia	Azerbajian	3.2	?	2066	AZ-GE				
	Azerbajian	5.4	?	2026	AZ-GE				
	Azerbajian	65	?	2021	AZ-GE-TK				
	Azerbajian	3.8	?	2030	AZ-GE				
	Russia	n.a	?	yearly	RU-GE-ARM				
Moldova (supply)	Russia	11	?	2019	UA-MD				
Moldova (tranzit)	Russia	176	?	2019	UA-MD				
North Macedonia	Russia	1	?	yearly	UA-RO-BG-MK				
Serbia	Russia	up to 50	?	2021	UA-HU-RS				

Assumptions on Daily Peak Demand for Gas

- Daily Peak Demand data is used to calculate System Reliability Index
- Peak Daily Demand is supposed to capture capability of gas system to cope with most challenging demand situation
- Should be simulated based on future system characteristics (supply, demand) and weather conditions; in EU, responsibility of TSO to simulate daily peak demand (however not simulated in all EU countries, in some cases based on historic peak from last 5 years)
- For EU countries, daily peak demand taken from ENTSOG TYNDP 2018 (Best Scenario)
- Contracting Parties report little or no daily peak demand data

Country (GWh/day)	2020	2025	2030
Bosnia and Herzegovina	13	13	13
Macedonia	23	23	23
Montenegro	1	1	1
Serbia	165	192	220
Kosovo	2	2	2
Albania	15	15	15
Ukraine	2337	2454	2454
Moldova	94	94	94
Georgia	156	175	194
Turkey	2586	2806	2806

Consumption forecast for emerging gas markets

- Consumption change in some countries is subject to infrastructure not in place yet
- Will be used only when the projects on the territory of the respective country is modelled
- This applyes to:
 - Albania
 - Bosnia and Herzegovina
 - Kosovo*
 - Montenegro
 - North Macedonia

Thank you!

REKK

www.rekk.hu

Borbála Takácsné Tóth

Senior research associate

REKK (REKK Kft.) Po. Box 1803 1465 Budapest Hungary

E-Mail: borbala.toth@rekk.hu **Phone:** +36-1-482-7070

DNV GL

www.dnvgl.com

Dr. Daniel Grote

Senior Consultant Policy & Regulation

DNV GL Energy Zanderstr. 7 53177 Bonn Germany

E-Mail: Daniel.Grote@dnvgl.com

Phone: +49-228-4469049