REPUBLIC OF SERBIA
SECURITY OF SUPPLY STATEMENT

Year 2018
TABLE OF CONTENTS

ABBREVIATIONS... 1

1. INTRODUCTION... 1
 1.1. LEGISLATIVE AND REGULATORY FRAMEWORK OF THE ENERGY SECTOR 1
 1.2. INSTITUTIONAL FRAMEWORK GOVERNING THE ENERGY SECTOR .. 2
 1.3. WORKING GROUP ON SECURITY OF SUPPLY ... 4
 1.4. OTHER IMPORTANT ACTS FOR THE FUNCTIONING OF THE ENERGY SECTOR 4
 1.4.1. Ordinance on Terms of Energy Supply .. 4
 1.4.2. Ordinance on Terms of Natural Gas Supply .. 5
 1.4.3. Regulations of Commodity Reserves .. 6

2. STRUCTURE OF ENERGY SECTOR.. 7
 2.1. CRUDE OIL SECTOR .. 7
 2.2. NATURAL GAS SECTOR ... 8
 2.3. COAL SECTOR ... 9
 2.4. ENERGY SECTOR ... 9
 2.5. THERMAL ENERGY SECTOR .. 10
 2.6. RENEWABLE ENERGY SECTOR .. 11
 2.7. ENERGY RESOURCES ... 11

3. ELECTRICITY .. 13
 3.1. ELECTRICITY MARKET .. 13
 3.1.1. Participants in the Electricity Market ... 14
 3.1.2. Bilateral Electricity Market ... 15
 3.1.3. Balancing Electricity Market .. 18
 3.1.4. Organized Electricity Market ... 20
 3.2. PRODUCTION, TRANSMISSION AND DISTRIBUTION CAPACITIES 21
 3.2.1. Production Capacities .. 21
 3.2.2. Transmission Capacities .. 25
 3.2.3. Distribution Capacities ... 26
 3.3. SCOPE AND QUALITY OF THE PRODUCTION, TRANSMISSION AND DISTRIBUTION SYSTEMS
 MAINTENANCE .. 27
 3.3.1. Production Maintenance ... 27
 3.3.2. Transmission System Maintenance .. 29
 3.3.3. Distribution System Maintenance .. 30
 3.4. SECURITY ASSESSMENT OF TRANSMISSION AND DISTRIBUTION SYSTEM OPERATION 31
 3.4.1. Security Assessment of Transmission System Operation ... 31
 3.4.2. Security of Distribution System Operation ... 32
 3.5. MECHANISMS OF CONGESTION MANAGEMENT IN TRANSMISSION AND DISTRIBUTION SYSTEMS.... 33
3.5.1. Mechanisms of Congestion Management in Transmission Systems ... 33
3.5.2. Mechanisms for Congestion Management in Distribution Systems ... 34
3.6. Measures for Covering Peak Demand and Insufficient Amount of Provided Electricity 35
 3.7.1. Generation .. 36
 3.7.2. Transmission ... 36
 3.7.3. Distribution ... 38
3.8. Planned Electricity Consumption and Production / Method of Providing the Missing Quantities in the next Five-Years Period .. 39
 3.8.1. Realized Consumption and Production .. 39
 3.8.2. Method of Providing the Missing Quantities in the next Five-Years Period ... 40
3.9. Security Supply Forecast for the Next Five to Fifteen Years .. 41
3.10. Investments in Capacity for the Production of Electricity .. 44
3.11. Development Plan and Investments in Transmission System for the Next Three to Fifteen Years 47
3.12. Investment and Development Plan of the Distribution System for the Next Three to Five Years 49
3.13. Regional, National and European Goals of Sustainable Development, Including International Projects .. 50
4. Natural Gas ... 53
 4.1. Natural Gas Market .. 54
 4.2. Transport System .. 55
 4.2.1. Assessment of Transmission System Reliability ... 57
 4.3. Distribution System ... 57
 4.3.1. Assessment of Distribution System Reliability ... 58
 4.4. Storage of Natural Gas .. 61
 4.5. Security of Supply ... 62
 4.5.1. Planned Production and Consumption of Natural Gas and a Way for Ensuring Gas Supply for the Upcoming Five Years Period .. 62
 4.5.2. Measures to Cover Peak Demand or Shortfalls of Suppliers .. 67
 4.5.3. Quality and Maintenance of Infrastructure ... 67
 4.5.4. Incentives for New Investment in Exploration, Production, Transportation and Storage of Natural Gas .. 69
 4.5.5. Plans for the Construction of Energy Facilities to Ensure the Security of Natural Gas Supply .. 69
 4.5.6. Preventive Action Plan and Emergency Plan for ensuring the security of natural gas supply 73
5. Crude Oil and Petroleum Products ... 75
 5.1. Production, Import, Export and Consumption of Crude Oil and Petroleum Products 75
 5.1.1. Crude Oil ... 75
 5.1.2. Derivatives of Crude Oil .. 76
 5.2. Security of Supply of Oil and Petroleum Products ... 80
ABBREVIATIONS

AERS - Energy Agency of the Republic of Serbia
APKM - Autonomous Province of Kosovo and Metohija
CESEC - List of Projects for Gas Connection of Middle Eastern and South Eastern Europe
CHP - combined heat and power plant
EMS JSC - Joint Stock Company "Електромрежа Србије" Belgrade
DSO - distribution system operator
ELV - emission limit values
EnC - Energy Community
EU - European Union
GMRS - main gas pressure regulating and metering station
HPP - hydro power plant
IEI - energy intensity index
JSC - joint stock company
MB - mine basin
MG - main gas pipeline
NERP - National Emission Reduction Plan
OHL - overhead line
OTS - transport system operator
PCI - European Commission Projects of Common Interest
PE - public enterprise
PECI - Projects of Energy Community Interest
PMI - Projects of Mutual Interest
PPS - handover station
PS - petrol stations
PSHPP - pumped storage hydro power plant
RMC - remote, monitoring and control system
RS - Republic of Serbia
SBRA - Serbian Business Registers Agency
SCADA - Supervisory Control and Data Acquisition
SEEPEX - South-eastern European Power Exchange
SFO - natural gas storage facility operator
SS - switching station
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPP</td>
<td>thermal power plant</td>
</tr>
<tr>
<td>TPPNT</td>
<td>Thermal Power Plant Nikola Tesla</td>
</tr>
<tr>
<td>TS</td>
<td>transformer station</td>
</tr>
<tr>
<td>TSO</td>
<td>transmission system operator</td>
</tr>
<tr>
<td>UGSF</td>
<td>underground gas storage facility</td>
</tr>
<tr>
<td>WB6</td>
<td>Western Balkan Six</td>
</tr>
<tr>
<td>WBIF</td>
<td>Western Balkan Investment Framework project list</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1. Legislative and Regulatory Framework of the Energy Sector

The basic legal and strategic documents which regulate the operation of the energy sector and define and implement the energy policy:

- Energy Law,
- Energy Sector Development Strategy of the Republic of Serbia,
- Program of the Energy Development Strategy of the Republic of Serbia, and
- Energy Balance of the Republic of Serbia.

These documents define the general objectives in terms of security of supply of the market with energy and energy sources, and certain guidelines and frameworks for the adoption of other acts that further and closer define this issue.

Energy Law, adopted in December 2014 (Official Gazette of the RS, no. 145/2014) [1], among others, regulates:

- energy policy objectives and manner of its implementation,
- conditions for reliable, secure and high quality supply of energy and energy sources for a secure customer supply,
- energy and energy sources customer protection, conditions and manner of performing energy activities,
- conditions for the construction of new energy facilities,
- status and scope of the Energy Agency of the Republic of Serbia,
- use of renewable energy sources,
- organization and functioning of the electricity, natural gas, petroleum and petroleum products markets,
- the rights and obligations of participants in the market,
- establishment of ownership on the network operator systems,
- field of heat energy as the energy industry, and its production, distribution and supply, etc.

The Strategy is a document that outlines the energy policy and planning of energy sector development. Strategy is adopted by the National Assembly of the Republic of Serbia at the proposal of the Government of the Republic of Serbia (hereinafter referred to as Government) for a period of at least 15 years. The Ministry in charge of energy prepare a report every year for the Government on the realization of the Strategy.

Program defines the conditions, manner, dynamics and measures for the implementation of the Strategy. The program is adopted by the Government, for a period of up to six years on the proposal of the Ministry in charge of energy. The Ministry in charge of energy monitors the achievement of the Program and, if necessary, propose its adjustment to the actual needs at least every other year. The Government submits to the National Assembly an annual report on the
Strategy and Program implementation, which comprises: the results accomplished against the objectives set by the Strategy, or the Programme for the year in which the annual report on the Strategy and Program is being submitted; estimated effects of the achieved results and their impact on the Program in the upcoming year; a proposal of measures for a more efficient Strategy and Program implementation; estimated needs for adjusting the Program and possible Strategy adjustment to the actual needs. Government in accordance with the Strategy and Program brings national action plans that more closely define development objectives and measures for their implementation.

Energy Sector Development Strategy of the Republic of Serbia for the period 2015-2025 with projection up to 2030 was adopted in 2015 (Official Gazette of the RS, no. 101/2015) [2], and the passing of Program of the Energy Development Strategy of the Republic of Serbia until 2025 with Projections to 2030 for the period 2017 to 2023 was adopted in 2017 (Official Gazette of the RS, no. 104/2017) [3].

Energy Balance determines the annual need for energy and energy sources (expressed on a monthly basis), which is necessary to provide for the reliable, safe and quality supply of customers. It also emphasizes the rationality of energy consumption and energy optimization of resources and the required amount of energy, and energy sources, defines the required level and structure of energy stocks and spare capacity. Required contents of the Energy Balance are: balances of electricity, coal, oil, oil products and biofuels, natural gas, thermal energy and renewable energy. Government brings the Energy Balance on proposal of the Ministry in charge of energy, by the end of December of the current year for the following year. The Ministry in charge of energy monitors the implementation of the Energy balance, analyze its performance in the previous year and, if necessary, propose to the Government measures to ensure its implementation.

Ministry in charge of energy monitors the implementation of the National Action Plan For Renewable Energy and every two years submit a report about that to the Government.

1.2. Institutional Framework Governing the Energy Sector

The institutional framework for the energy sector is determined by the Constitution, the Energy Law [1] and Law on Ministries [4].

In the energy sector of the Republic of Serbia, the jurisdiction primarily have:

- The Government of the Republic of Serbia,
- Ministry in charge of energy and
- Energy Agency of the Republic of Serbia.

The Government of the Republic of Serbia prescribes conditions for delivery and supply of electricity, oil and natural gas, as well as measures to be taken in the event of an endangered security of energy and energy sources supply due to disturbances in the power system or the energy market. The Government adopts the Preventive Action and Contingency plan, in order to ensure safety of natural gas supply. Preventive Action plan contains a risk assessment in terms of achieving security of supply, as well as measures to mitigate the identified risks related to the required transportation capacity in order to meet the total demand for natural gas and to secure the supply of certain groups of final customers of natural gas. The Contingency plan determines measures, energy service companies which will be responsible for ensuring the security of the transmission system and the security of supply of certain groups of end customers, the quantity and capacity of natural gas in case of general shortage of natural gas. In case of compromised security of customer supply or energy system, due to insufficient offer in the energy market or the occurrence of other extraordinary circumstances, the Government provides measures and
limits the supply of electricity or natural gas. The Government can also provide special conditions for the import or export of certain types of energy, method and conditions for determination and price control, obligation to supply only certain customers or special conditions for energy activities with minimal disruption of the energy market in the region. If the safety of the supply is endangered because of the lack of oil offer in the energy and energy source market or because of the occurrence of other extraordinary circumstances, the Government can approve amendment of the limits of certain characteristics of petroleum products quality that can be put on the market of the Republic of Serbia for a period not exceeding six months.

Ministry in charge of energy performs state administrations related to: energy, energy policy and planning of energy development in the field of electricity, natural gas, oil and oil derivatives, the energy balance of the Republic of Serbia, the oil and gas industry, strategy and policy of energy security, development of annual and medium-term programs of energy security and providing material and other conditions for the implementation of these programs, mandatory and other reserves of energy sources, safe pipe transport of gaseous and liquid hydrocarbons, manufacturing, distribution and supply of thermal energy, rational use of energy and energy efficiency, renewable energy, environmental protection and climate change in the field of energy, coordinating activities in connection with investments in the energy sector, as well as other duties specified by law.

Energy Agency of the Republic of Serbia (AERS) was established in June 2005, on the basis of the Energy Law 84/04. Position, operating mode and activities of AERS are regulated by the Energy Law (Official Gazette of the RS, no. 145/2014) [1]. AERS is the only regulatory body for energy sector and was established in order to promote and direct the development of the electricity and natural gas market on the principles of non-discrimination and effective competition, through the creation of a stable regulatory framework, as well as to perform other tasks established by the mentioned law. AERS is an independent legal entity and independent from the executive authorities in performing their duties, as well as from other state agencies and organizations, legal entities and individuals engaged in the energy industry. Members of the Council are elected by the National Assembly, thus acquiring independence in decision-making from its purview.

The Energy Law [1] regulates the tasks performed by AERS. In performing these tasks AERS take measures that, among other things, contribute to achieving the following objectives: ensuring secure supply of energy through efficient operation and sustainable development of the energy system, in accordance with the energy policy of the Republic of Serbia, including environmental protection and the development of renewable energy sources; the development of the electricity market in the Republic of Serbia and its integration into the regional and pan-European electricity market. Also, AERS gives approval to market and technical rules, system development plans, brings the methodology for determining the price for access to the transmission or distribution of electricity, rates of access to transport, distribution and storage of natural gas, prices for guaranteed electricity supply and prices for natural gas public supply, and the cost of access to the system of oil transport pipelines and systems for the transportation of oil derivatives.

Local self-government units also have a specific role in the implementation of energy policy, which is defined through the institutional framework of the Republic of Serbia. Article 361 of the Energy Law [1] defines that local self-government units on their territory may establish an energy entity for performing the activity of thermal energy production, distribution and supply to customers, where the act on association shall determine the conditions and manner of performing each of these activities. It implies that founding act must be in accordance with the Energy Law and other acts from the institutional framework of the Republic of Serbia for energy sector.
1.3. Working Group on Security of Supply

Since 2005, the competent Ministry in charge of energy sector introduced the practice of forming Working Group to review and monitor the situation regarding security of energy and fuels supply in the Republic of Serbia. The main task of the Working Group is monitoring the situation regarding reliable and optimal supply of energy market. The working group is formed by a decision issued by the Minister in charge of energy. Meetings are held on a monthly basis during the whole year and more often, if it is necessary, depending on the situation.

Task of the Working Group is consideration and monitoring security of energy and energy sources supply, proposing appropriate measures, preparing the basis for a report on the security of electricity and natural gas supply and proposing measures in case the compromised security of customer supply or energy system operation, due to insufficient offer on the energy market or the occurrence of other extraordinary circumstances.

Energy entities deliver Reports on activities for the Working Group meetings which contain information on the operation of the energy sector, their operating status and readiness, actual and potential problems, as well as projections for the next period (30 days).

1.4. Other Important Acts for the Functioning of the Energy Sector

1.4.1. Ordinance on Terms of Energy Supply

Ordinance on Conditions for Delivery and Supply of Electricity (Official Gazette of the RS, no. 63/2013) [5] shall regulate more specific terms of energy supply, as well as the measures taken in case the security of energy supply has been jeopardized due to the functional disruption of the energy system or the disruption in the energy market in the Republic of Serbia, namely:

- Terms and procedure of granting approval for connection to the electric energy transmission or distribution systems,
- Measures to be undertaken in case of short-term disruptions caused by breakdowns and other unforeseen circumstances whereby safety of the energy system operation is jeopardized, as well as due to unforeseen and necessary works on maintenance of electric power facilities and required works on the expansion of the electric power system, and also other terms and measures for the purpose of supplying customers with electric energy,
- Measures to be undertaken in the case of a general electric power shortage, terms and conditions for undertaking measures and the schedule of restricting energy supply, as well as measures of energy saving and rational consumption in case of a general energy shortage,
- Terms and conditions of electricity supply suspension, as well as the rights and obligations of system operators, suppliers, or the public supplier and final customers,
- Terms and conditions for rational use of energy and energy saving,
- Method of calculation of unauthorized take-off of energy,
- Terms and conditions for the supply of electricity to customers,
Terms and manner of fulfilling responsibilities of the supplier and public supplier.

1.4.2. Ordinance on Terms of Natural Gas Supply

Ordinance on Terms of Natural Gas Delivery and Supply (Official Gazette of the RS, no. 47/06, 3/10 and 48/10) [6] presents detailed terms of delivery and supply of natural gas, as well as measures to be taken in case of failing safety of natural gas delivery and supply to end-users due to disruptions in transmission or distribution system operation, or disturbances in the natural gas market in the Republic of Serbia, as follows:

- Conditions and procedure of granting approval for connection to the transmission or distribution system of natural gas,
- Measures to be taken in the event of short-term disruptions caused by failures and other unforeseen circumstances which threaten the safety of transportation, and natural gas distribution system, as well as the necessary maintenance of energy facilities and required works on the upgrade of the system, as well as other conditions and measures for supplying customers with natural gas;
- Measures to be taken in case of general shortage of natural gas, due to the circumstances referred to in Article 164 of the Energy Law [1],
- Conditions and methods of the suspension of natural gas supplies,
- Conditions and rational use of energy and saving natural gas,
- Terms and methods of measures and schedule constraints of natural gas supply, as well as measures for saving and rational use in case of general shortage of natural gas,
- Conditions of supplying privileged end-users’ facilities to whom cannot be suspended supply due to outstanding liabilities for delivered natural gas or in other cases,
- Method of regulating relations between the supplier and the end-user to whom cannot be suspended natural gas supply,
- Method of measuring natural gas quantities,
- Calculating method for unauthorized natural gas take over,
- End-users public information.

According to the provisions of this by-law regulation, in the case of short-term disruption of natural gas supplies, caused by breakdowns in its facilities, equipment, pipelines and installations for the transport and distribution of natural gas, and other unforeseen circumstances which threaten the safety of transportation and distribution system, due to unforeseen reparation, reconstruction and maintenance of transportation and distribution systems as well as required system expansion works, the transmission or distribution system is required to measure the degree of a disruption, and take the necessary actions to bring the system in a safe and uninterrupted operation as well to determine the terms of use the remaining capacity of production, transportation or distribution systems and develop the plan for limiting the delivery of natural gas.

The plan for limiting the delivery of natural gas comprises of the following measures: replacement of natural gas with other energy sources, limit supplies of natural gas and the suspension of natural gas supplies.

This Regulation set forth the restrictive measures to be taken in case of general shortage of natural gas, conditions and terms of suspension of natural gas supplies, conditions and rational use of energy and saving natural gas, as well as objects of end-users to whom cannot be
suspended natural gas supply and methodology for regulation of the relation between the supplier and the end-user to whom cannot be suspended natural gas supplies.

The transmission and distribution system operators and public suppliers are obliged in case of general shortage immediately inform the ministry about the occurrence of general shortage. The Ministry, on the basis of this notice as soon as possible submits a proposal to the Government for a decision on the implementation of measures under Article 164 of the Energy Law [1].

1.4.3. Regulations of Commodity Reserves

In the part of security of supply, the area of oil is regulated by the Law on commodity reserves which regulates the conditions for the formation, financing, deployment, use and restoration of the obligatory reserves of oil and petroleum products, provision and maintenance of space for storage, as well as the operation and management of the compulsory reserves and storage facilities on the territory of the Republic of Serbia.
2. STRUCTURE OF ENERGY SECTOR

The energy system of the Republic of Serbia is consisted of oil, natural draft, coal, power engineering sector, the sector of thermal energy and renewable energy sources. This chapter provides a brief overview of the basic data relating to the mentioned energy sectors, while a detailed description will be given in the context of specific chapters.

2.1. Crude Oil Sector

Exploitation of domestic crude oil reserves is performed within the limits of NIS JSC (in 2017 it amounted 0.889 million tonnes, which is 30% of total needs). The NIS JSC is the only company in Republic of Serbia engaged in crude oil and natural gas exploration and production. Since 25th January, 2009 the majority stock holder (owner) in NIS JSC is the Russian company Gazprom Neft.

Production of petroleum products is carried out within Pančevo Oil Refinery which is a part of NIS JSC (in 2017 domestic production of petroleum products amounted 3.637 million tonnes, which is 90.6% of total needs for petroleum products).

By the new Energy Law [1] some of the existing energy activities, for which a license has been provided in this area, have gained new meanings. Thus, the activity of producing oil products includes not only the processes of obtaining oil products by crude oil refining, degasolination or separating light liquid hydrocarbons, but also all the technological processes that give standardized products of the prescribed quality.

In Republic of Serbia, the production of oil products, more precisely liquefied petroleum gases, is performed, except in the refinery in Pančevo, at the NIS JSC plant for stabilization, i.e. preparation of natural gas for transportation in Elemir (propane, as well as gas condensate). Also in plants in Odzaci by Standard gas (propane and butane as well as pentane-hexane fraction, or solvent), where imported gas condensate i.e wide fraction of light hydrocarbons is used as the raw material for production; and in the "Hipol a.d. Odžaci" (Hipol JSC), where the propane receives as a by-product in the process of purification of petrochemical propylene to propylene polymeric purity. At the same location, but in other plants, the Energreen MTV is also produces the same products. The production of propane-butane mixture and autogas, based on the mixing of components, is carried out by Petrol LPG in Smederevo and VML at the plant in Jakovo.

The only service provider - operator is "JP Transnafta Pančevo" (PE Transnafta), which is founded on October 1, 2005 until when the service was carried out within NIS JSC company. The business activities of transportation of crude oil through crude oil pipelines and petroleum products through product pipelines are the regulated business activity of general interest and is carried out by PE Transnafta by regulated prices.

The activity of trade of crude oil and petroleum products including biofuels and compressed natural gas and storage is operated by a large number of economic entities. There are 21 licenses being issued for crude oil and petroleum products storage, also 46 for crude oil and petroleum products wholesale and 470 for crude oil and petroleum products retail trade. The import of crude oil is liberal and the prices are commercial. The retail trade of petroleum products on the territory of the Republic of Serbia is performed through the developed and outspread trade network of 1450 retail facilities.

In Republic of Serbia, the supply of transport vehicles with compressed natural gas, as a fuel, is done at 20 stations.

In addition to the traditional trade in motor and other fuels at the stations for the supply of transport vehicles, the new Energy Law provides a license for fuel trade out of the fuel station. In this way, the supply of sports airplanes by jet fuel and direct supply of end users with energy and
heating products, such as fuel oils, biofuels, propane, propane-butane mixture and other, are regulated. For this activity, for now, the license have two energy entities.

Total consumption of petroleum products as final energy-generating product amounted 3.246 Mtoe, out of which 0.614 Mtoe was spent for non-energy purposes and 2.731 Mtoe was spent for energy purposes whereby mostly in traffic sector 79%, then in industry 11.97%, in agriculture was spent 4.82%, and in households about 1.74%, while the rest of consumers participate with 2.46%.

Directive 2009/28/EC, which refers to the required content of biofuels in motor fuels, in order to reduce the greenhouse gas emissions, has not been implemented in domestic legislation yet. By the Action plan for building new capacities on the basis of renewable energy sources is assumed obligation to reach 10% of the share of biofuels in motor fuels by 2020, but the share of biofuels in the oil products in 2016 was still negligible. So far, the license for production of biofuels and bioliquids has been given to a single entity, whereas for the mixing biofuels with petroleum fuels the license have two energy entities.

2.2. Natural Gas Sector

Natural gas sector comprises of:

- Exploration of indigenous natural gas reserves within NIS JSC (production in 2017 was 489.085 million Sm³)\(^1\),
- Natural gas import (one direction from Russia via Ukraine and Hungary, total amount of 2,182.632 million Sm³ in 2017),
- Storage of natural gas and storage management (Underground storage Banatski Dvor - UGS Banatski Dvor, capacity of 450 million m³ of natural gas),
- Natural gas supply,
- Natural gas transmission and transmission management (PE Srbijagas and "Yugorosgaz-Transport d.o.o. Niš")
- Natural gas distribution and distribution management is performed by 33 licensed distribution system operators. License for natural gas distribution is possessed for one additional company, but it haven’t not performed this activity.

In 2017, natural gas consumption in Republic of Serbia had the following structure:

- Transformation input 34.62%;
- Consumption in the energy sector 7.61%;
- Transmission and distribution losses 1.36%;
- Non-energy consumption 16%;
- Final energy consumption 40.41%.

In process of natural gas transformation in other forms of energy, highest share had district heating plants – 61.45%, followed by autoproducers with 14.84%, refineries with 13.39% and CHP with 10.32 %.

The highest share within final energy consumption for energy purposes had industry (53.88%) followed by households with 22.42%, agriculture and traffic sector with 4.39%. while the commercial and public sectors had the share of 21.11%.

\(^1\)Sm³ is standard cubic meter of natural gas at a temperature of 15°C, 1013.25 mbar pressure and lower calorific value of H\(_L\)=33338 kJ/m³.
2.3. Coal Sector

The largest part of the energy reserves fossil fuels of the Republic of Serbia (about 99%) are various types of coal, whose exploitation takes place within of:

- Mining of PE Resavica (in 2017 it produced 0.490 million tonnes of coal),
- Underwater exploitation in Kovin (in 2017 it produced 0.244 million tonnes)
- Surface coal mining in two major mines in Kolubara (in 2017 domestic production was 29.39 million tonnes) and Kostolac (in 2017 production was 9.68 million tonnes of coal), which are located within PE EPS.

Of the total domestic production of coal, 98% comes from surface exploitation, and the rest of the underground and underwater exploitation. Domestic production mainly produces low-quality lignite, so the need for higher quality types of coal covered from imports. That is the reason why the domestic production satisfies 97% of the total demand for coal and the rest is imported.

Import includes import of coal shortage types of coal and coke for the needs of metallurgical complex and high-calorie coal for the industry, and the brown coal for different consumers. Total domestic coal production in 2017 amounted to 39,806 million tonnes, or 7.216 Mtoe, while the total amount of coal available for consumption is about 7.875 Mtoe. Of this amount for the transformation process has been spent up to 7.613 Mtoe, of which 6.713 Mtoe (85%) in thermal power plants, and the remaining of 15% in industrial power plants, heating plants, blast furnaces and coal processing.

Within the processing of coal in Vreoci, which is part of PE EPS, in 2017 was produced 508,380 tonnes of dry lignite.

Final consumption of coal in 2017 amounted 0.671 Mtoe of which in non energy purposes 0.004 Mtoe, and in energy purposes 0.688 Mtoe. In the structure of final consumption for energy purposes, the participation of industry is 43%, 45% of households and other sectors with 12%.

2.4. Energy Sector

Capacities for the production of electricity in the Republic of Serbia, for the most part are owned by PE EPS (99%), and their structure in 2017 is:

- Thermal Power Plants (TPP), net output capacity of these plants is 4,054 MW
- Combined Heat and Power Plants (CHP), with net output capacity 336 MW
- Hydro Power Plants (HPP) with net output capacity 3,029.33 MW (including small hydro power plants)
- Wind Power Plants, with net output capacity 17 MW
- Solar Power plants, with net output capacity 10.5 MW
- Biogas Power plants, with net output capacity 12.34 MW
- Industrial power plants, with net output capacity 20.5 MW.

In about twenty industrial enterprises there are power stations that enable production of electric and thermal energy, capacity of 100 MW, of which the largest number was not operational.

Total electricity production in 2017 was 37,043 GWh (3.185 Mtoe). The largest part of production was realized in thermal power plants (71%) and hydro power plants (26%). Combined heat and power plants and industrial power plants in total electricity production together accounted for about 2.2%. Import of electricity was 6,549 GWh (0.563 Mtoe), export 5,724 GWh (0.492 Mtoe), so that net gross export amounted to 825 GWh (0.071 Mtoe).
Power consumption of the energy sector in the same year amounted to 12.43% of the total generated electricity (gross production). Losses in the transmission and distribution system amounted to 12.97% of the total electricity production (gross production).

Final electricity demand was 27,792 GWh (2.39 Mtoe). Electricity as final energy is consumed mostly in households (51%), then in industrial plants along with the construction sector (29%), and transport, agriculture and other consumers (20%).

In 2017, there were 63 licenced electricity suppliers for open market supply (only 19 were active). PE EPS remained dominant with 94.5 share of total energy sold in the open market and 97.5% of final consumption.

2.5. Thermal Energy Sector

Capacities for the production of thermal energy in the Republic of Serbia are installed in:

- Power Plants within the district heating system
- Thermal Power Plants (TPP)
- Combined Heat and Power Plants (CHP)
- Industrial Power Plants
- The individual boiler rooms that are not covered by energy balance.

Centralized heat supply exists in 57 towns in Serbia, with the total installed thermal capacity of boilers 6.548 GW.

Industrial power plant are used to produce thermal energy for needs of different industrial process. Except for manufacturing processes, thermal energy produced in these power plants is also used for heating of working space. In particular industrial enterprises are power plants that provide combined heat and power generation (it is estimated that in 2017 10,748 TJ of heat and 524 GWh of electricity was produced).

Production of thermal energy takes place in thermal power plants and combined heat and power plants. These are the following objects in the composition of PE EPS:

- TPP Nikola Tesla A (unit A1 and A2) for district heating of Obrenovac (steam coal units)
- TPP Kostolac A for district heating of Požarevac and Kostolac (steam units for coal)
- TPP Kolubara A for district heating of Lazarevac
- CHP Novi Sad, Zrenjanin and Sremska Mitrovica for district heating and process steam (steam units for the gas and liquid fuel, new boiler in TPP Sremska Mitrovica on biomass).

Natural gas, coal, oil products and biomass are used for the production of heat in district heating plants. In 2017, in the thermal power plants was spent 565,657 million m³ of natural gas, 165,430 tonnes of coal, 80,543 tonnes of petroleum products and 7,989 tonnes of biomass.

The thermal energy production in 2017 amounted about 36,855 TJ or 0.880 Mtoe. The largest part of the production was achieved in industrial power plants (29%) and thermal power plants (60%).

Distribution losses were 3,220 TJ, or 0.077 Mtoe and consumption of the energy sector was 2,198 TJ or 0.052 Mtoe. Final energy consumption in 2017 amounted to 31,438 TJ or 0.751 Mtoe. When it comes to this amount, in industrial power plants was spent (35.3%) and in household (49.5%). Other consumers accounted for 15.2% of final energy.
2.6. **Renewable Energy Sector**

Renewable energy sector includes:

- The production of geothermal energy,
- Use of hydropower potential, solar and wind energy,
- The production of solid, liquid and gaseous biomass,
- Import and export of biomass,
- The production of electrical and thermal energy from plants using renewable energy sources.

Balance of renewable energy for 2017, included the production and consumption of electricity from large and small watercourses, geothermal energy, solid biomass (firewood, pellets, briquettes), biogas, solar energy and wind energy. In 2017, renewable energy accounted for 18% of the domestic production of primary energy.

Electricity production from large and small watercourses was included in the balance of the total electricity production in the Republic of Serbia and was 9,752 GWh or 0.839 Mtoe. This means that in 2017 the hydropower plants produced 26.32% of the total gross electricity generation.

Geothermal energy production is followed by the Statistical Office of the Republic of Serbia within their statistical surveys and in 2017 this production was 0.0051 Mtoe which is less than 1% of the total domestic production of primary energy. This data did not cover use of geothermal energy through the use of heat pumps.

Production and consumption of solid biomass, includes, not only the production and consumption of firewood, but also the production of pellets and briquettes, for energy purposes (heating). Biomass production in 2017 in the Republic of Serbia was 1.084 Mtoe, of which the largest part of 0.804 Mtoe was consumed in households.

2.7. **Energy Resources**

Energy resources and potentials of the Republic of Serbia consists of fossil, conventional (coal, oil and natural gas) and unconventional fuels (oil shale), as well as renewable energy sources.

Good quality energy reserves, such as oil and gas are symbolic and make less than 1% of geological reserves, while the remaining 99% of energy reserves are various types of coal, with the largest share of lignite from over 95% of the balance reserves. Considering the total geological reserves, among the most abundant coal reserves, the presence of still unexploited oil shale, at around 9% of the total geological reserves, is observed.

Coal reserves should, according to the projections of the consumption, meet consumption requirement until the end of this century.

Oil shale reserves are significant, but the conditions for their exploitation and technology for their use has yet to be defined, given that this is an unconventional fuel.

The volume of oil and natural gas reserves will last until 2030, and further exploitation, will depend on the translation of the off-balance reserves into balance reserves, as well as on the discovery of new deposits. Thus, the geological reserves of primary energy sources still represent a significant basis.

For the renewable energy sector, with the exception of large hydro power plants, it can be said that it is in the early stage of development. Estimated total technically available potential of renewable energy sources in Serbia is 5.65 Mtoe per year. From this potential 1.054 tonnes of oil equivalent of biomass and 909 thousand tonnes of oil equivalent of hydropower is already used.
Primary production includes exploitation, or use of domestic resources of coal, crude oil, natural gas and renewable energy sources (hydro potential, geothermal energy, and biomass). In Republic of Serbia 10,525 Mtoe of primary energy was produced in 2017. This production has satisfied more than 60% of the total demand for primary energy. The structure of domestic production of primary energy is as follows: coal production amounts to 7,216 Mtoe of the total domestic production of primary energy, while the remaining part is the production of crude oil and natural gas, hydropower and wind and solar energy, the production of firewood and geothermal energy.

Total primary energy consumption in 2017 was 16,031 Mtoe. Net import dependence of Republic of Serbia in 2017 was 35.05%. During 2017, mostly imported energy sources were: crude oil and petroleum products 59.39%, natural gas 24.38%, coal 8.66%, 7.1% electricity and etc.

Primary energy was used for:

- Transformation in the thermal power plants, hydro power plants, combined heat and power plants, heating plants, industrial power plants, oil refineries, coal processing, blast furnace;
- The consumption of the energy sector;
- Losses in transmission and distribution of energy and energy sources;
- Direct consumption by end users.

In the consumption structure for the transformation processes, dominates the consumption of coal 55.8%, then 28.7% of crude oil, petroleum products 2.6%, natural gas 5.8% and 6% of the hydropower potential. Total consumption of final energy includes energy consumed in transformation processes as well as part of the total available primary energy which is not included in the processes of transformation and are directly consumed by end users.

Total final energy consumption in Serbia in 2017 was 9.645 Mtoe of which 0.994 Mtoe was consumed for non-energy purposes, while the consumption of final energy for energy purposes was 8.432 Mtoe.

By consumption sectors, final energy was most consumed in the household sector 34.17%, followed by industry 26.56%, then traffic 25.64%, while other sectors accounted for 13.64%.

On the other hand, in the final energy consumption, energy products consumption is dominated by oil with 32.39% and electricity with 28.34%, followed by natural gas with 11.28%, coal with 7.92%, thermal energy with 8.9%, while renewable energy (firewood) participate with 12.32%.
3. **ELECTRICITY**

Energy Law [1] in electricity defines the energy activities related to: electricity generation, combined generation of electricity and thermal energy, electricity transmission and electricity transmission system management, electricity distribution and electricity distribution system management, power distribution and management of the closed distribution system, electricity supply, wholesale electricity supply and organised electricity market operation. An energy-related activity can be performed by a public enterprise, business entity or other legal entity or entrepreneur having a license for performing the energy-related activity.

Energy activities of public interest, are carried out in accordance with this Law which regulates the status of public companies (Official Gazette of the RS, no. 15/2016). In the area of electricity those are: electricity transmission and transmission system management, electricity distribution and distribution system management. The other listed energy activities are performed in accordance with market principles.

To perform these energy-related activities, all domestic and foreign entities must obtain a permit, ie license issued by the AERS. The license is an administrative act on fulfilment of conditions stipulated by the Energy Law [1] and the Rulebook on Licence for Performance of Energy Activities and Certification (Official Gazette of the RS, no. 87/15 [7]).

License is issued for each energy activity separately. It is issued for ten years, and for the production of electricity, the combined production of electricity and thermal energy and thermal energy production for 30 years.

In the energy sector of Republic of Serbia, following energy entities have a part:

- EMS JSC which in 2016 changed the legal form from a public company to a joint stock company, performs the activities of transmission and electricity transmission system management
- PE EPS performing the following activities: electricity generation, electricity supply and wholesale electricity supply. PE EPS is the founder of the subsidiary EPS Distribucija for the performance of the activity of electricity distribution and distribution system management and subsidiary "EPS Trgovanje d.o.o. Ljubljana" by PE EPS set up for electricity trading.
- "SEEPEX a.d. Beograd" (SEEPEX), licensed market operator on organized market/power exchange.
- Other electricity producers
- Other electricity suppliers.

3.1. **Electricity Market**

By adopting the new Energy Law at the end of 2014 [1], the field of energy in domestic legislation is harmonized with the provisions of the Third energy legislative package of the European Union, which continued the process of introducing competition in the electricity sector in Serbia, in order to increase the efficiency of the sector through the effects of market mechanisms in the production and supply of electricity, while retaining the economic regulation of the activity of transmission and distribution of electricity as natural monopolies.

According to the new Energy Law [1], the conditions for obtaining the right to guaranteed electricity supply have been changed. Accordingly, from January 1, 2015 households and customers who have the status of a small customers are entitled to guaranteed supply, at prices regulated by AERS. In accordance with that, the following applies:
end customer is a legal or natural person or entrepreneur purchasing electricity or natural gas for its own needs;

small electricity customers are end customers (legal persons and entrepreneurs) with fewer than 50 employees and a total annual revenue of up to 10 million € in dinar counter value, whose all facilities are connected to the electricity distribution system with the voltage level lower than 1 kV, and whose electricity consumption in the previous year was not higher than 30,000 kWh;

guaranteed supply is a public service ensuring the right of households and small customers to the supply of electricity having prescribed characteristics in the territory of the Republic of Serbia, at reasonable, clearly comparable, transparent and non-discriminatory prices;

Households and small customers can remain under guaranteed supply and supplied in accordance with existing contracts, but they have the right and the possibility (but not the obligation) to contract supply with any licensed electricity supplier in the free market.

If a household or small customer chooses a supplier in the free market and then for any reason remains without the selected supplier, it can always return to regulated, guaranteed supply. Other customers must have a supply contract on market terms.

An end customer of electricity that is not entitled to guaranteed supply, who does not have a valid supply contract (Article 192 of the Energy Law [1]), has the right to last resort supply for a period of 60 consecutive days, in which he must find a new supplier (otherwise the system operator shall suspend electricity supply to that customer). On the basis of the conducted public tender procedure, the Government shall designate the supplier to perform last resort supply. The price at which the guaranteed supplier shall carry out last resort supply may not be lower than the average price of electricity in the organised market for the previous year (Article 193 of the Energy Law [1]).

According to the Energy Law [1], the electricity market in Republic of Serbia includes:

- bilateral electricity market;
- balancing electricity market and
- organized electricity market.

3.1.1. Participants in the Electricity Market

Energy Law stipulates that players in the electricity market may be: an electricity producer, a supplier, a public supplier, the final customer, the electricity transmission system operator, the electricity distribution system operator, the electricity closed distribution system operator and the market operator. The organised electricity market participants may also be other legal persons, in accordance with the rules on the organised market operation. Electricity market players are obligated to submit all necessary data to the transmission, i.e. distribution system operator pursuant to Electricity Transmission Grid Code ("Official Gazette of RS", no. 114/2017) [8], Electricity Distribution Grid Code (Official Gazette of the RS, no. 71/17) [9] and Electricity Market Code [10].

The number of currently active licences for energy operations in electricity sector is presented in the following table.
Table 1: Active licences in electricity sector in year 2017 [11]

<table>
<thead>
<tr>
<th>Activity</th>
<th>Active licenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity production</td>
<td>21</td>
</tr>
<tr>
<td>Combined power and heat production</td>
<td>6</td>
</tr>
<tr>
<td>Electricity transmission and transmission system operation</td>
<td>1</td>
</tr>
<tr>
<td>Electricity distribution and distribution system operation</td>
<td>1</td>
</tr>
<tr>
<td>Electricity supply</td>
<td>64</td>
</tr>
<tr>
<td>Wholesale electricity supply</td>
<td>44</td>
</tr>
<tr>
<td>Organised electricity market operation</td>
<td>1</td>
</tr>
</tbody>
</table>

On the territory of the Republic of Serbia, EMS JSC is selected for performing of energy operations in the field of transmission of electricity and EPS Distribucija in field of distribution of electricity, as noted in the introduction to this chapter.

Energy Law 2014 [1] prescribes new obligations that those energy entities must fulfill in the process of obtaining a license, which relate to the provisions regarding the separation and certification of the electricity transmission system operator, as well as the provisions related to the separation of operators distribution system of electricity and provisions related to the compliance program and the person who monitors its implementation. By the decision of the Council of AERS, on 8 December 2017, EMS JSC is licensed for energy transmission and transmission system operation.

3.1.2. Bilateral Electricity Market

A bilateral electricity market is the market on which electricity is directly purchased and sold among the market participants on the basis of agreements on electricity supply (the Energy Law [1]).

The agreement on electricity supply particularly defines the amount of electricity, the price and the period of supply.

The amount of electricity may be:

- determined in advance for each accounting period during the period of supply,
- determined on the basis of the recorded electricity consumption at the point of takeover during the supply period, and
- determined on the basis of the recorded electricity production at the point of takeover during the supply period.

On the wholesale bilateral market the participants trade in electricity at open prices, whereas on the retail bilateral market supply is organized at open market prices and regulated prices, considering that since 2015 all customers, except for households and small customers, have been obliged to purchase electricity in the open market. Households and small customers have an option to select a supplier in the open market, but they can always switch back to the guaranteed supplier.

The activities of the suppliers and wholesale suppliers in the open market were mostly concerned with the field of cross-border exchange, mostly for transit through Serbia which is dominant due to the central geographic position of the power system of Serbia in the region with eight borders, as well as for the purpose of export and import for final customers.

Table 2 and Table 3 present the relevant indicators of the electricity market in Serbia during the period 2013-2017.

<table>
<thead>
<tr>
<th>Supplier’s activity</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electricity quantity [GWh]</td>
<td>Share of three suppliers with the greatest trading scale [%]</td>
<td>Market concentration level</td>
</tr>
<tr>
<td>Sales to EPS</td>
<td>4</td>
<td>100</td>
<td>High</td>
</tr>
<tr>
<td>Purchase from EPS</td>
<td>3,297</td>
<td>54</td>
<td>Moderately high</td>
</tr>
</tbody>
</table>
| Trade between suppliers
| Sales | 1,143| 63 | High | 948 | 40 | Low | 1,349 | 42 | 852 | Low |
| Purchase | 1,298| 54 | Moderately high | 941 | 26 | Low | 1,345 | 36 | 620 | Low |
| Electricity import and export
| Import | 486 | 46 | Moderately high | 2,925 | 43 | Low | 2,926 | 49 | 893 | Low |
| Export | 3,672| 52 | Moderately high | 1,255 | 29 | Low | 2,306 | 60 | 536 | Low |
| Transit | 8,328| 57 | 12,774 | 41 | 14,092 | 48 | 815 | Low |

\(^2\) Herfindahl-Hirschman index (HHI) is defined as the sum of squares of share of a single company in the market. The lower the value, the more developed is market competition. In order to rank market concentration, following boundaries are used: HHI < 1000 – not concentrated, 1001 < HHI < 2000 – moderately concentrated, HHI >2001 – highly concentrated market.
Table 3: Electricity market concentration level in Serbia (2016-2017)\(^3\) [11]

<table>
<thead>
<tr>
<th>Supplier’s activity</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electricity quantity [GWh]</td>
<td>Share of three suppliers with the greatest trading scale</td>
</tr>
<tr>
<td></td>
<td>[%]</td>
<td>[GWh]</td>
</tr>
<tr>
<td>Sales</td>
<td>533</td>
<td>80</td>
</tr>
<tr>
<td>Purchase</td>
<td>533</td>
<td>72</td>
</tr>
</tbody>
</table>

Trade on organized electricity market

<table>
<thead>
<tr>
<th>Supplier’s activity</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electricity quantity [GWh]</td>
<td>Share of three suppliers with the greatest trading scale</td>
</tr>
<tr>
<td></td>
<td>[%]</td>
<td>[GWh]</td>
</tr>
<tr>
<td>Sales</td>
<td>5,279</td>
<td>57</td>
</tr>
<tr>
<td>Purchase</td>
<td>5,279</td>
<td>35</td>
</tr>
</tbody>
</table>

Trade between suppliers on bilateral electricity market

<table>
<thead>
<tr>
<th>Supplier’s activity</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electricity quantity [GWh]</td>
<td>Share of three suppliers with the greatest trading scale</td>
</tr>
<tr>
<td></td>
<td>[%]</td>
<td>[GWh]</td>
</tr>
<tr>
<td>Sales</td>
<td>11,603</td>
<td>98</td>
</tr>
</tbody>
</table>

\(^3\) Herfindahl-Hirschman index (HHI) is defined as the sum of squares of share of a single company in the market. The lower the value, the more developed is market competition. In order to rank market concentration, following boundaries are used: HHI < 1000 – not concentrated, 1001 < HHI < 2000 – moderately concentrated, HHI >2001 – highly concentrated market.
In 2017, out of 56 active suppliers, there were 6 of them among the three dominant ones in each activity. Trade on the organized market is moderately highly concentrated, which is a consequence of new members to the stock market and a greater volume of trade. Trade on the bilateral market is at the level of trade from 2016 with the tendency of reducing market concentration. Unlike 2016, when the high concentration of the bilateral market in the domain of sales was noticed because PE EPS was the dominant distributor of electricity in the bilateral market, in 2017, high concentration was transferred to the domain of purchase, while in the domain of sales it declined significantly. The concentration of the retail market is very high, but there is still a slight trend towards a decrease in concentration compared to 2016.

Table 12 on the page 15 presents the electricity consumption in Serbia (without APKM) during the period 2013-2017. There was a 1.7% increase in the electricity consumption in 2017 in comparison with 2016.

The total number of metering points for customer delivery in Serbia, without APKM (without metering points of facilities within Železnice Srbije– 41 in total), was 3,639,637 in the end of 2017. Compared to 2016, the number was increased by 0.4% (3,624,625) [11].

In 2017, only households and small customers (besides having to meet the conditions related to annual income and number of employees, they are restricted to 30,000 kWh consumption in the previous year and all their facilities must be connected to the grid voltage lower than 1 kV) purchased in the organized market. Enforced legal restriction had a dominant impact on the reduction of supply in the regulated market from 16,138 GWh in 2016 to 15,600 GWh in 2017, which is a 3.4% decline. It the end of 2017, electricity at regulated prices was delivered on the total of 3,512,066 metering points to final customers [11].

The valid regulated price of electricity for the guaranteed supply of end customers was approved on October 1, 2017. The average price increase for all customers with a right at a regulated price is 2%. During 2017, the Methodology for determining the price of electricity for guaranteed supplies was not subject to changes and additions.

Since 2015, all final customers have been able to purchase electricity in the open market where 12,609 GWh was delivered in 2017, which amounted to 44.4% of the total consumption of final customers. The customers in the open market, which included a small number of households, had their electricity delivered to over 101,000 metering points (it amounts to 118,000 along with public lighting). Out of 63 companies licenced for electricity supply in 2017, there were 19 of them active in the open retail market. The dominant supplier in the free market was still PE EPS with a 94.5% share in the total electricity quantities sold to final costumers in the open market and 97.5% share in the final consumption [11].

3.1.3. **Balancing Electricity Market**

Balancing electricity market was established on January 1, 2013 and functions pursuant to Energy Law [1], Electricity Market Code [10] and Electricity Transmission Grid Code [8]. The legal form for establishing and functioning of balancing electricity market is defined by Energy Law [1], and transmission system operator is responsible for system balancing, according to the Law, which includes the following:

- providing the balancing services in accordance with transparent, non-discriminatory and market principles which will provide adequate incentives for system users to keep balance between their delivery and takeover of electricity;

- determination of the price of electricity for the needs of system balancing, pursuant to Electricity Market Code;
On the balancing electricity market, the transmission system operator purchases and sells balancing energy for the purpose of balancing between production, consumption and electricity exchange in real time and ensuring the necessary level of frequency restoration reserve and replacement reserve. Pursuant to Energy Law [1], the transmission system operator, with the prior approval of AERS, shall adopt the Rules of Operation of the electricity market. The rules on the electricity market operation shall regulate in more detail: balance responsibility of market participants, balancing electricity market, calculation of balance group deviations, calculation of financial offsets between balance responsible parties, the payment security instrument and criteria for determining the amount and the period for which it is required, calculation of electricity needed for balancing and ensuring safe system operation, the method for providing system services and other matters necessary for the electricity market functioning.

During 2017, further improvement of the electricity market in the Republic of Serbia was continued, through the introduction of the new information system for market management (Market Management System).

In 2017, 60 electricity market participants had a contract on balance responsibility with EMS JSC, which is, as the transmission system operator, responsible for system balancing and providing system services within its control area. Since the beginning of the balancing market operation, EMS JSC publishes hourly values of activated balancing energy and the settlement price.

In 2017, in line with Contract on Providing Ancillary Services and Contract on Participation in Balancing Mechanism signed with PE EPS, EMS JSC activated the balancing entities of frequency restoration and reserve replacement within its control area for the purpose of keeping balance between the total electricity production, consumption and nominated exchange blocks and calculate the deviations of the balance groups on the basis of which a financial settlement between the EMS JSC and the balance-of-responsibility parties at the monthly level. Also, during 2016 EMS JSC performed so called cross-border balancing for the purpose of keeping balance within its own control area. This was done by activating balancing energy pursuant to contracts on cross-border exchange of balancing energy for replacement reserve with neighbouring transmission system operators, and the engagement consisted of the activation of slow cross-border reserve (emergency electrical energy) and the activation of balancing reserve within accounting period (in accordance with Contract on Sales and Purchase of Balancing Energy for Replacement Reserve for Ensuring Safe System Operation, signed with the transmission system operator of Montenegro (CGES) and NOSBIH (B&H TSO)).

In 2017, the total engaged balancing energy was 813,579.29 MWh, for which the total weighted settlement price amounted to 50,668 €/MWh, or, bearing in mind the direction of activated balancing entities [16]:

- In cases where the total balance energy in the calculation interval was greater than zero: 62,302 €/MWh,
- In cases where the total balance energy in the calculation interval was less than zero: 24,935 €/MWh.

The transmission system operator is also responsible for providing necessary system services in order to meet the needs of transmission system customers. In order to provide necessary resources, i.e. power capacities and energy for the needs of frequency containment, frequency restoration and replacement reserve, voltage regulation, as well as system restoration after blackout. The contracted reserve of active power for the needs of frequency containment process
amounted to 36 MW in 2017. Also in 2017, the contracted active power range for the needs of frequency restoration was 160 MW, while the contracted positive and negative replacement reserve were 300 MW and 150 MW, respectively.

In this moment, the needs for frequency containment reserve in the following years cannot be precisely estimated, but it can be said, with a great certainty, that frequency containment reserve will not exceed the amount of 45 MW. Therefore, it can be concluded that EMS JSC should not have difficulties in securing frequency containment reserve in the coming period.

Required reserve of active power in frequency restoration within the EMS JSC control area is 160 MW, while on the other hand the total available frequency restoration reserve in the EMS JSC control area is 1,076 MW (out of which 916 MW in hydro power plants and 160 MW in thermal power plants), so it can be concluded that EMS JSC should not have problems in securing frequency restoration reserve in the coming period. However, even though the quality of frequency restoration process has had a slight upward trend for a while, it should be mentioned that it is still not on a satisfactory level.

In 2017, the number of hours of satisfactory operation of frequency restoration was between 33% (the value in December) and 64% (the value in November). The average hourly regulation error was between -63.8 MW and 24.7 MW, and the standard deviation of regulation error was between 42.2 MW and 89.9 MW.

EMS JSC is taking measures in order to additionally improve the quality of operation of frequency restoration. In this respect, EMS JSC, together with the transmission system operators of Macedonia (MEPSO) and Montenegro (CGES) with whom it forms a control block within a synchronised area Continental Europe, during 2017 continued redefining the operating mode of frequency restoration in the way which would enable the exchange of frequency restoration energy in real time, in accordance with European grid codes.

During 2017 PE EPS satisfactorily fulfilled contractual obligations related to securing reserve replacement, while EMS JSC covered his needs for the procurement of reserve from abroad mainly by exchange of cross-border regulating energy for replacement reserve from CGEC (transmission system operator of Montenegro). From the 1. December 2017, there is also a contract on the exchange of cross-border tertiary regulatory energy with NOSBIH. In relation to emergency situation energy, cross-border tertiary regulating energy can be activated much faster (in 15 minutes), the procedure is simple, and the price of energy is usually lower. In 2017, EMS JSC procured the total of 506 MWh and delivered 507 MWh of cross-border regulating energy. Also, during the 2017 EMS JSC procured the total of 1,100 MWh and delivered 850 MWh of emergency energy.

3.1.4. Organized Electricity Market

Pursuant to Energy Law [1], organised electricity market is an institutionally regulated relationship between supply and demand of the electricity market participants with predefined standardised products and physical delivery, on a time-scale of one day in advance and within a day. The activity of organised electricity market management shall be performed by the market operator founded by the transmission system operator, in the manner prescribed by an act of the Government.

The market operator shall be responsible for establishment of the organised electricity market, administering of the organised electricity market, efficient and functional connection of the electricity market in the Republic of Serbia with neighbouring electricity markets, in cooperation with the transmission system operator in the Republic of Serbia, as well as transmission system
operators and market operators of neighbouring countries, in accordance with internationally defined principles and undertaken obligations.

EMS JSC, as an energy entity that was licensed to perform energy activities in the organization of the electricity market, founded on July 14, 2015 SEEPEX - power exchange, formed on the basis of partnership with EPEX SPOT. At the beginning, SEEPEX [12] decided to manage an organized market with standardized products on a day-ahead market.

The benefits that SEEPEX has generated in the development of the electricity market in Serbia and the region is reflected through:

- getting a new product,
- harmonization of the trade process and clearing in the organized market in accordance with the best European practice,
- transparent pricing mechanism,
- getting and publishing the reference price,
- financial security of transactions concluded on the organized market through a centralized clearing and financial settlement process and
- promotion of competition.

The power exchange\(^4\) started operating in February 2016. On the stock exchange, 16 participants were registered in 2017, which is 3 more than in 2016. 15 were actively involved in the trade, which is for 4 participants more than in 2016. Currently SEEPEX has two standardized products — Single Contract Orders and Block Orders. Offers for individual hours contain up to 256 price/quantity combinations for each hour of the next day. Prices must be between 0.0 €/MWh and 3,000 €/MWh. The 254 prices are not necessarily the same for each hour. A volume (whether positive, negative or nil) must be entered in the price range. Block Orders were successfully introduced on March 22, 2017 which enabled the participants to enter orders for one or more delivery periods with a minimum one-hour delivery for the same day of delivery. Block orders are used to link several hours on an all-or-none basis, which means that either the bid is matched on all hours or it is entirely rejected. Pre-defined Block Orders exist but participants are not restricted in the determination of the Block Orders of their choice.

The total amount of electricity that was traded on SEEPEX in 2017 was 847,556.7 MWh. The highest monthly trading volume of 144,189.9 MWh was realized in December, and highest daily trading volume of 8,270.6 MWh on May 6, 2017. The lowest monthly trading volume was in February and accounted for 26,478.4 MWh. The highest hourly rate reached on January 11, at 9 a.m. and amounted to 205.68 €/MWh. The average annual price was 51.05 €/MWh.

3.2. Production, Transmission and Distribution Capacities

3.2.1. Production Capacities

3.2.1.1. Conventional Energy Sources

The total net installed capacity of the power plants in Republic of Serbia in 2017 amounts to 7,416 MW. Within PE EPS, in lignite-fired thermal power plants, the installed capacity amounts

\(^4\) SEEPEX activities can be followed on the website www.seepex-spot.com.
to 4.054 MW, in hydro power plants 2,977 MW, in natural gas- fired or heat oil-fired thermal power plants 336 MW and in small hydro power plants 54,544 MW (Table 4). The lignite used in thermal power plants is produced in open pits which belong to PE EPS.

In addition to the production capacities of PE EPS, the distribution network includes small power plants with a total installed capacity of 48.67 MW, owned by other entity.

Table 4: Electricity generation capacities from 2013 to 2017[^25] [^17]

<table>
<thead>
<tr>
<th>Technology</th>
<th>Installed capacity [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power plants (coal)</td>
<td>2013</td>
</tr>
<tr>
<td>Combined heat and power plants (gas, fuel oil)</td>
<td></td>
</tr>
<tr>
<td>Hydro power plants</td>
<td>3.918</td>
</tr>
<tr>
<td>Small power plants</td>
<td>34.25</td>
</tr>
<tr>
<td>Other sources (renewable sources)</td>
<td>8.88</td>
</tr>
<tr>
<td>Wind power plants</td>
<td>0.5</td>
</tr>
<tr>
<td>Solar power plants</td>
<td>3.48</td>
</tr>
<tr>
<td>Biogass power plants</td>
<td>4.9</td>
</tr>
<tr>
<td>Total</td>
<td>7,041</td>
</tr>
</tbody>
</table>

The share of the capacities within thermal power plants (TPP) and combined heat and power plants (CHP) amounts to 59%, while the hydro power plants (HPP) cover 40%. There is also one pumped-storage hydro power plant among HPPs of PE EPS with 2x307 MW capacity which is very important for system operation, apart from covering an important energy share, and about 0.66% of the installed capacity are small power plants connected to the distribution system.

In addition to PE EPS, which is the largest and dominant electricity producer, the license for the production of electricity or for the combined production of electricity and heat has another 18 energy entities that have small production facilities connected to the distribution network. Of all of them, the highest are NIS JSC with 11.94 MW installed in 9 facilities, Vetropark Kula with 9.9 MW, power plant in Novi Sad with combined production of 9.98 MW, Elicio company with Malibunar wind farm with 8.320 MW and "ENERGOBALKAN d.o.o." with the wind farm "La Piccolina" with 6.6 MW.

The construction of new production units is needed in order to replace the existing ones, which, due to outdated technology cannot meet the requirements of environmental protection, as well as to cover the possible increase in electricity consumption.

[^25]: Small hydropower plants - installed capacity up to 10 MW.
As of June 1999, EPS does not operate its facilities on the territory of Kosovo and Metohija.

Figure 1: Production capacities PE EPS

6 As of June 1999, EPS does not operate its facilities on the territory of Kosovo and Metohija.
3.2.1.2. Renewable Energy Sources

Pursuant to the Article 20 of the Energy Community Treaty (Official Gazette of the RS, no. 62/06) the Republic of Serbia accepted the commitment to apply European Directives in the field of renewable energy sources - Directive 2001/77/EC for the promotion of electricity from renewable energy sources and the Directive 2003/30/EC for the promotion of biofuels or other fuels produced from renewable energy sources for transport. Since 2009 mentioned Directives were gradually replaced and in January 2012 they were repealed by a new Directive 2009/28/EC of the European Parliament and Council, dated April 23, 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

In accordance with the Directive 2009/28/EC [13] and the Decision of the Council of Ministers of the European Community dtd. October 18, 2012 (D/2012/04/MC-EnC) a very ambitious binding target was set for the Republic of Serbia, amounting to 27% renewable energy sources in final gross energy consumption in 2020 and 10% of the energy share of produced from renewable energy sources in transport in 2020. At the same time, it was defined that the National Action Plan for renewable energy sources of the Republic of Serbia should be prepared, in compliance with the adopted template for the preparation of this document (Decision 2009/548/EC).

The Republic of Serbia in 2013 has adopted the National Renewable Energy Action Plan [14] as a framework for the promotion of energy produced from renewable sources and has set mandatory national targets for the share of energy from renewable energy sources which defined the way of achieving binding national target.

Pursuant to the abovementioned and in order to increase the use of renewable sources, Republic of Serbia joined the countries that subsidize the production of electricity from renewable sources and introduced the most widespread model - stimulated fixed redemption price (the "feed-in" tariffs) with the guaranteed electricity takeover of 12 years.

Incentive measures can be used by energy entities that have acquired the status of a privileged producer within the meaning of the Energy Law [1]. The privileged producer is entitled to incentive measures by concluding a contract on purchase of electricity with a guaranteed supplier.

The Government, at the proposal of the Ministry in charge of energy, adopts regulations that detail the conditions and procedure of acquisition, duration and termination of the status of privileged producer of electricity from renewable energy sources, the maximum capacity of all power plants using wind and solar energy that will get status of privileged producer, content and other elements of the contract on purchase of electricity. In accordance with the Energy Law [1] Ministry in charge of energy monitors the implementation of the National Action Plan and submits the annual report to the Government (hereinafter: the Report). Also, in accordance with Article 15 of the Decision of the Ministerial Council of the Energy Community (D/2012/04/MC-EnC) signatories to the Treaty establishing the EnC submit report to the EnC Secretariat on progress in the promotion and use of energy from renewable sources every two years. The first report was made in 2014 (Official Gazette of the RS, no. 8/15) and contains data for year 2012 and 2013, while the Report of the progress on implementation of the national action plan for renewable energy sources was adopted in December 2016.

The quantities of electricity taken over from renewable sources from 2013 to 2017 are shown in Table 5.
Table 5: Electricity production from renewable sources from 2013 to 2017 [25]

<table>
<thead>
<tr>
<th>Renewable energy sources</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro power plants</td>
<td>10,853</td>
<td>11,617</td>
<td>10,783</td>
<td>11,520</td>
<td>9,752</td>
</tr>
<tr>
<td>Solar power plants</td>
<td>1.50</td>
<td>6.00</td>
<td>11.45</td>
<td>12.43</td>
<td>13.14</td>
</tr>
<tr>
<td>Wind power plants</td>
<td>0.55</td>
<td>0.37</td>
<td>0.42</td>
<td>25.91</td>
<td>48.45</td>
</tr>
<tr>
<td>Biogas power plants</td>
<td>18.70</td>
<td>20.65</td>
<td>23.00</td>
<td>34.00</td>
<td>71.6</td>
</tr>
<tr>
<td>Total</td>
<td>10,873.75</td>
<td>11,644.03</td>
<td>10,817.87</td>
<td>11,592.34</td>
<td>9,885.19</td>
</tr>
</tbody>
</table>

3.2.2. Transmission Capacities

Transmission system of Republic of Serbia includes 220 and 400 kV network and one part of 110 kV network in accordance with the Energy Law [1].

Transmission lines 400 kV connect the largest and most important centres of production and consumption in Serbia. Mainly over this voltage level, whole power system of Serbia is interconnected with power systems of the neighbouring countries, allowing international trade of electricity. Transmission system makes Serbia part of a Pan-European system for the transmission of electricity. Over interconnection lines Republic of Serbia is directly connected with eight countries and provides the transmission of electricity from north to south, from east to west and from the northeast to the southwest of Europe [16].

Transmission system of EMS JSC is connected with the neighbouring power systems via twenty-six 400, 220 and 110 kV interconnection lines, while 22 of them are active. In addition to transmission lines and power plants transmission system includes other supporting systems (telecommunication system, remote control system, power consumption, etc.). All of this makes transmission system one of the most complex infrastructure systems.

The electricity transmission system of the Republic of Serbia which EMS JSC is responsible for, is shown in Table 6 and Table 7.

When it comes to the capacity of the facilities which are owned by EMS JSC in 2017, only a small change in capacity occurred due to the replacement of two 220/110 kV transformers of 150 MVA in TS 220/110/35 kV Kruševac 1 during the reconstruction of this TS. Two new 220/110 kV transformers of 250 MVA were installed. In 2017, there were no other changes in capacity in EMS JSC facilities, nor the commissioning of new facilities.

The change in transmission line capacity in 2017 was due to the construction of a double 400 kV transmission line TC 400/220/110 kV Pančevo 2 – Romania border TS Rešica (463AB). Also, some of the changes in the table are related to the overview of the transmission lines are due to the fact that during the transfer of data to the new technical base of, certain defects that were figured in the previous technical base were noticed (the number of 110 kV transmission lines and the number <110 kV transmission line).

In line with the Energy Law [1], the handover of overhead lines and cables 110 kV between EMS JSC and PE EPS which started in 2013 is still ongoing. The majority of 110 kV transmission lines and a total of 8 cable lines have been taken, while the remaining power lines are owned by EPS Distribucija Jagodina 4 - Jagodina 3, Lazarevac - Ljig and Raška - Kopaonik and 2 cables: TS Beograd 5 - TS Beograd 41 and TS Beograd 41 - TS Beograd 40 for which there were no usage permits. In previous years there were no data on 110 kV cables because they practically were not in the network (excluding 110 kV cable TS Beograd 1 - TS Beograd 28 which was shown in 2017).
Table 6: EMS JSC facilities [16]

<table>
<thead>
<tr>
<th>Facilities owned by EMS JSC</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>400/x kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of facilities</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Number of transformers</td>
<td>23</td>
<td>24</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>220/x kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of facilities</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Number of transformers</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>110/x kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of facilities</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Number of transformers</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of facilities</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Number of transformers</td>
<td>67</td>
<td>68</td>
<td>73</td>
<td>73</td>
<td>73</td>
</tr>
</tbody>
</table>

Table 7: EMS JSC transmission lines [16]

<table>
<thead>
<tr>
<th>Power lines owned by EMS JSC</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of OHL</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>Length of OHL (km)</td>
<td>1,613.72</td>
<td>1,613.72</td>
<td>1,630.04</td>
<td>1,629.4</td>
<td>1,766.0</td>
</tr>
<tr>
<td>220 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of OHL</td>
<td>48</td>
<td>48</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Length of OHL (km)</td>
<td>1,884.47</td>
<td>1,884.47</td>
<td>1,845.51</td>
<td>1,844.59</td>
<td>1,844.59</td>
</tr>
<tr>
<td>110 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of OHL</td>
<td>332</td>
<td>341</td>
<td>353</td>
<td>359</td>
<td>358</td>
</tr>
<tr>
<td>Length of OHL (km)</td>
<td>5,578.68</td>
<td>5,641.47</td>
<td>5,785.78</td>
<td>5,821.29</td>
<td>5,805.23</td>
</tr>
<tr>
<td>110 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cable каблова</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Length of cable (km)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>36.58</td>
</tr>
<tr>
<td>< 110 kV*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of OHL</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Length of OHL (km)</td>
<td>245.50</td>
<td>235.03</td>
<td>231.85</td>
<td>220.62</td>
<td>220.63</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of lines</td>
<td>427</td>
<td>434</td>
<td>445</td>
<td>450</td>
<td>459</td>
</tr>
<tr>
<td>Length of lines (km)</td>
<td>9,322.37</td>
<td>9,374.69</td>
<td>9,493.18</td>
<td>9,515.90</td>
<td>9,673.07</td>
</tr>
</tbody>
</table>

*110 kV OHL works on the 35 kV voltage.

3.2.3. Distribution Capacities

Distribution system of Republic of Serbia includes 35 kV, 20 kV, 10 kV
and 0.4 kV network and transformer stations 110/X kV, in accordance with the Energy Law [1].

Within the EPS Distribucija there are 35,158 transformer stations with a total installed capacity of 29,853 MVA (Table 8) and 161,933 km of power lines of all voltage levels (Table 9).

The process of handover of substations between EMS JSC and PE EPS in accordance with the Energy Law [1], which started in 2013, is still in progress. The majority of 110/X kV transformers were taken from the EPS Distribucija, while the other facilities of TS Sevojno and TS Beograd 11 are owned by EMS JSC, for which there is a property problem, so there is a problem with usage licensed.
Table 8: EPS Distribucija facilities [17]

<table>
<thead>
<tr>
<th>Facilities owned by EPS Distribucija</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>110/X kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of facilities</td>
<td>177</td>
<td>186</td>
<td>183</td>
<td>187</td>
<td>188</td>
</tr>
<tr>
<td>Installed capacity [MVA]</td>
<td>9,476</td>
<td>10,388</td>
<td>10,326</td>
<td>10,623</td>
<td>10,540</td>
</tr>
<tr>
<td>35/10 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of facilities</td>
<td>589</td>
<td>589</td>
<td>583</td>
<td>581</td>
<td>562</td>
</tr>
<tr>
<td>Installed capacity [MVA]</td>
<td>6,313</td>
<td>6,313</td>
<td>6,439</td>
<td>6,446</td>
<td>6,317</td>
</tr>
<tr>
<td>20/0,4 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of facilities</td>
<td>8,044</td>
<td>8,126</td>
<td>11,141</td>
<td>8,344</td>
<td>8,492</td>
</tr>
<tr>
<td>Installed capacity [MVA]</td>
<td>3,052</td>
<td>3,087</td>
<td>5,174</td>
<td>3,188</td>
<td>3,247</td>
</tr>
<tr>
<td>10/0.4 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of facilities</td>
<td>25,542</td>
<td>27,535</td>
<td>26,372</td>
<td>25,765</td>
<td>25,916</td>
</tr>
<tr>
<td>Installed capacity [MVA]</td>
<td>9,435</td>
<td>11,209</td>
<td>9,913</td>
<td>9,770</td>
<td>9,749</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of facilities</td>
<td>34,352</td>
<td>36,436</td>
<td>38,279</td>
<td>34,877</td>
<td>35,158</td>
</tr>
<tr>
<td>Installed capacity [MVA]</td>
<td>28,276</td>
<td>30,997</td>
<td>31,852</td>
<td>30,027</td>
<td>29,853</td>
</tr>
</tbody>
</table>

Table 9: EPS Distribucija power lines [17]

<table>
<thead>
<tr>
<th>Power lines owned by EPS Distribucija (km)</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 kV</td>
<td>183</td>
<td>151</td>
<td>33.66</td>
<td>33.66</td>
<td>7.86</td>
</tr>
<tr>
<td>35 kV</td>
<td>6,844</td>
<td>6,830</td>
<td>6,823</td>
<td>6,791</td>
<td>6,582</td>
</tr>
<tr>
<td>20 kV</td>
<td>9,053</td>
<td>9,251</td>
<td>9,388</td>
<td>9,587</td>
<td>9,960</td>
</tr>
<tr>
<td>10 kV</td>
<td>30,530</td>
<td>32,349</td>
<td>32,701</td>
<td>32,929</td>
<td>33,153</td>
</tr>
<tr>
<td>0,4 kV</td>
<td>105,401</td>
<td>109,928</td>
<td>110,919</td>
<td>111,540</td>
<td>112,230</td>
</tr>
<tr>
<td>Total</td>
<td>152,011</td>
<td>158,509</td>
<td>159,865</td>
<td>160,881</td>
<td>161,933</td>
</tr>
</tbody>
</table>

3.3. Scope and Quality of the Production, Transmission and Distribution Systems Maintenance

3.3.1. Production Maintenance

The program for maintenance of electricity and heat production in 2017 included the following activities: (planned-preventive and corrective, i.e. intervention maintenance), overhaul (standard, extended and capital) and investment maintenance (modernization of equipment, increase efficiency, prolonging the life of plant exploitation, increasing installed capacity, environmental programs).

The goals of routine maintenance in 2017 were: determining and monitoring the state of the plant through regular preventive examinations and various methods of diagnostics, implementation of minor preventive work on plants, analysis of observed disorders and taking necessary corrective measures at a convenient time and in cases of sudden failure of the plant, organization of quickly failures repair and returning the plant to the working state.

Thermal sector

When it comes to thermal power plants and combined thermal - heat power plants, during 2017, there was not a mid-volume overhaul, nor capital overhauls. Only standard overhauls on 17 blocks are done (from the total of 22, under the management of PE EPS). The typical duration of the standard overhaul is 3 - 6 weeks (per block), and during it the repair and recovery of the mutilated circuits were performed, as well as replacement of parts that are assumed to be unable to withstand, without failure, until the next overhaul.
According to the repair plan for 2017, on June 1, 2017, the capital overhaul on A4 block in TPP Nikola Tesla should have started. However, this did not happen, as the public procurement for demounting and assembly work on the boiler pipe system was not successfully carried out, and the capital overhaul of this block was postponed for 2018.

Hydro sector

PE EPS has 49 classical hydro-generators, two pumping plants, two reversible hydro-generators and one household aggregate (the third aggregate in HPP Međuvsje). All these aggregates were organized in a total of 16 hydropower plants and one pumping accumulation plant through branches of HPP Đerdap and Drina Limska HPP. The most significant jobs were two revitializations:

- Aggregate A1 in HPP Đerdap 1. Revitalization of this unit started on 03.08.2015. and the plan for the completion of the works was September 20, 2016. However, due to the large delay in the delivery of new turbine equipment from Russia, there has been a delay in the implementation of revitalization for more than a year. The date for the final end of revitalization, is October 17, 2017. (after executed handover tests), and there is 24 month guarantee. The power of the aggregate before revitalization was 190 MW. After testing, it turned out that the new unit could reach 207 MW. The main result of revitalization is the extension of aggregate life for the next 35 years. This ended stage no. 4 (from the total of 6) revitalization of the whole plant of HPP Đerdap 1.

- Aggregate A2 in the HPP Zvornik. The revitalization of this unit started on December 27, 2016, and the plan for the completion of the works was on January 6, 2018. The official end of revitalization was 10.01.2018. year when trial work was completed. The power of the aggregate is now 31.4 MW, so increase is 7.4 MW in regard to the maximum power before revitalization.

Regarding other hydropalts, standard overhauls were performed as well as two capital overhauls (aggregates A5 and A6 in HPP Đerdap 2). All planned works have been completed according to the repair plan, including plants of its own consumption, block transformers, a number of activities on ship conductors, protection of coastal areas, etc.

Other activities

- Preparation activities have been carried out to start the implementation of the project "Reconstruction of the evaporation system for TENT A", ie preparation of investment and technical documentation for the upgrade of ash and slag depots has been carried out.

- Preparation on construction site for the project "Construction of flue gas desulphurization plants A3 and A6" (financed by the Government of Japan) has also been intensified. A contract was signed with a Japanese contractor MHPS (September 8, 2017), which may be considered to have started this work.

- The Expert Council of PE EPS adopted the Feasibility Study and Preliminary Design of Revitalization of Blocks A1 and A2 in TENT A, as well as blocks A1 and A2 in TPP Kostolac A. The study considers the possibility of extending the life of these blocks, including the possibility of working in accordance with environmental regulations.

- During 2017, a number of preparatory activities related to the revitalization of HPP Potpeć, HPP Bistrica, HPP Vlasinska and HPP Đerdap 2 were carried out. These activities include the preparation of technical and tender documentation.
3.3.2. Transmission System Maintenance

Energy Law [1] stipulates the obligation of the system operator to ensure safe and reliable transmission of electrical energy, which therefore implies adequate maintenance.

During 2017, the focus of works on power lines was on regular maintenance, inspections, and overhauls. The 99.7% of the planned disconnections were made to 110 kV, 99.8% to 220 kV and 100% to 400 kV voltage level (about 99.85% of planned by number). On all transmission lines 400 kV, 220 kV and 110 kV, which were excluded in 2017, works on maintenance of the corresponding fields were made.

It should be emphasized that in 2017 all planned overhauls and transmission line checks were carried out, except OHL 1140/2, problematic part of the route along the mainland safety zone with KiM, due to the inability to obtain approval for the execution of works, as well as OHL 1193 and OHL 263AB, due to the inability to obtain energy consent.

In 2017, a total of 7,887 km of transmission lines of all voltage levels were repaired. 82.83% of the total length of all transmission lines (without the Obilic sector), by voltage levels: 84.59% 110 kV transmission lines, 96.85% 220 kV transmission lines and 59.19% 400 kV transmission lines. From the major works on the transmission lines in 2017, a double OHL 400 kV number 463AB, TS Pančevo 2 - the border of Romania/TS Rešica was constructed. Works on the territory of Serbia have been completed and the transmission line has been released in this part of the route. However, works on the Romanian side have not yet been completed, so this long-distance transmission line can not be fully operational up to Rešica in Romania. Therefore, it was decided that the right A system (from the direction of the TS Pančevo 2) put to 110 kV to the tension line number 179 (on which the power bridges are unbreakable), until the works on the Romanian side are complete and transmission line is put in work. In order to repair the voltage conditions and increase the security of the transmission system operation in the area of Southeast Banat, and reduce the losses in the transmission network, it was agreed that A system OHL 463AB be connected to OHL 1002 (TS Vršac 2 - TS Bela Crkva), with which it is crossed in range 174-175. At the crossing point, a temporary connection between these two OHL is set.

During 2017, several specific tasks were realized:

- Works on harmonization of OHL 110 kV with highway E80: OHL number 1192 (TS Pirot 1 - TS Pirot 2), OHL number 1194 (TS Pirot 2 - TS Dimitrovgrad), OHL number 1195 (TS Pirot 2 - TS Babašnica, under operation 35 kV) and OHL number 1249 (TS Niš 2 - TS Pirot 2);
- Construction of temporary connection between OHL 110 kV number 106B/2 TS Valjevo 3 - TS Osečina (rigid connection) and existing pillar number 22 (number 23 after reconstruction) on the 110 kV transmission line number 106A/1 TS Valjevo 1 – TS Valjevo 2.

During 2017 several rehabilitation was done on the 110 kV transmission lines, of which the few is stand out:

- Replacement of phase conductors, connecting equipment and insulation on OHL 110 kV number 1140/3 TS Bujanovac - EVP Ristovac;
- Replacement of pillar No.138 on 110 kV transmission line number 1166 HPP Derdap 2 - TS Veliki Krivelj;
- In the OHL 226 TS Kruševac 1 - TS Niš 2, the replacement of pillar number 163;
In 2017, the installation of the OPGW protection cable from the Atenica node (pillar number 22 - old number 10) to TS Čačak 2 was carried out on the 2x110 kV transmission line number 115/7 node Atenica - TS Čačak 2 and number 1138 TS Čačak 2 - TS Guča as well as DV 220 kV number 227/1 TS B. Bašta - TS Valjevo 3 in the ranges of 117-120; replacement of the OPGW protective cable rope was carried out on: OHL 400 kV number 412 TS Beograd 8 - TS Obrenovac, from pillar number 128 to portal C11 to TS Obrenovac and OHL 110 kV number 1245 TS Niš 2 - TS Prokuplje, on the section of pillar number 12A up to pillar number 70. Rehabilitation of the damaged OPGW rope was done on: DV 110 kV number 157 TS Arandelovac - TS Mladenovac, OHL 110 kV number 107/3 TS Valjevo 3 - TS Valjevo 1 in the range 1 - 2 and OHL 220 kV 297/1 TS Kraljevo 3 - TS Čačak 3 in the range 30 - 31.

Operational competence of transformers and high-voltage equipment was at a high level during 2017. Quality preventive and corrective maintenance of high voltage equipment, regular inspections, checks and overhauls, and reconstruction of fields in transformer stations contributed to good competence of transformer stations.

With the aim of replacing the energy transformer 110/6 kV, the new transformer of the manufacturer ETRA was bought, which was preserved and stored on the TENT A. The first phase of adaptation of own consumption of SS 110 kV Đerdap 2 was completed.

3.3.3. Distribution System Maintenance

The revitalization of TS 110/X kV is being carried out phase-by-stage, starting in 2015. In the first phase, eight TSs for revitalization were selected: Petrovac 1, Šabac 1, Aleksinac, Gornji Milanovac, Lešnica, Niš 1, Zrenjanin 1 and Beograd 2. For the first five TSs funds were provided from the World Bank through loans. During 2017 and 2018, procurement and receipt of materials and equipment for these five TSs were carried out. Also, contractors for construction and electro works were selected and works started on August 9, 2018. years. According to the plan, the completion of the reconstruction of these 5 TSs is planned for the end of 2019. For the remaining three TSs, preliminary projects were made.

The second phase started the contracting of investment-techniques documentation that includes the collection of building works permits. In the second phase, the following TS 110/X kV are planned: Beograd 10, Požarevac 1, Kuršumlija, Raška and Bor 1.

The third phase involves the reconstruction of eight more TS 110/X kV, four of them are over jurisdiction of EMS JSC, and four were owned by JP EPS. It is expected soon to call for the tender for the selection of the Investor and Technical Documentation for reconstruction.

During 2017 at 110 kV voltage level, there was no expansion of capacities of existing transformer stations (by installing new ones and replacing existing transformers). Among the most significant operations only the replacement of transformer T1 110/35 kV with 110/20 kV of the same power in TS Alibunar and transformer T1 110/35 kV with 110/20 kV of the same power in TS Ruma 1 are significant. At the medium-voltage level, with the construction of 319 new transformer stations installed capacity of this category of facilities was increased by 121.56 MVA. The total length of the medium voltage distribution network in 2017 was 512.03 km, while the low voltage network increased by 702.29 km in the same period.

The significant investment into the distribution system automaticisation at all voltage levels over the last several years has led to the considerable increase in the number of facilities and elements of the distribution system which are included in the remote monitoring and control systems (RMC). At TS 110/X kV, as the most important elements of the distribution system, out of the
total of 187 facilities from this category, 177 are included in RMC, and it is expected that the remaining 10 TS will be adjusted and included in the mentioned system. As for TS 35/X kV and switching stations, 334 out of the total 577 are included in RMC. The process of automatisation of the elements of the remaining part of the distribution system within the EPS Distribucija is in a considerable progress as well, so that 1,108 different elements/facilities (TS 20(10)/0.4 kV, reclosers and busbar sectionings), which are distributed throughout the network, are currently included in RMC.

The activities related to the taking over of the metering devices and switchboards in the facilities of the existing customers or producers connected to the distribution network, were continued during 2017 according to the plan adopted by AERS – described in the chapter 3.7.3.

3.4. Security Assessment of Transmission and Distribution System Operation

The main guideline in the construction of the transmission and distribution network is the "n-1" criteria, according to which failure of any transmission line does not lead to a reduction in the supply of electric power to customers. Radially powered system users in which this criterion is not fulfilled are mostly in rural and mountainous areas at the distribution level.

3.4.1. Security Assessment of Transmission System Operation

Indicators of discontinuity of delivery in the transmission network which are monitored and calculated are the following:

- Power failure – undelivered power [MW] – total failed power on all measuring points where supply was interrupted,
- ENS [MWh] – total undelivered electricity which amounts to total undelivered electricity during all interruptions,
- ENS [%] – a share of undelivered electricity in total delivered electricity,
- AIT [min] – average interruption duration in minutes, a quotient of undelivered electricity and average power.

Indicators of discontinuity in delivery within the transmission network calculated in such a manner for the period 2013 – 2017 are given in Table 10.
Table 10: Indicators of discontinuity in delivery within the transmission network in the period 2013 – 2017 [11]

<table>
<thead>
<tr>
<th>Intermittences</th>
<th>Power failure – undelivered power [MW]</th>
<th>ENS [MWh]</th>
<th>ENS [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 Planned</td>
<td>161</td>
<td>618</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Unplanned</td>
<td>1.770</td>
<td>747</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.931</td>
<td>1.365</td>
</tr>
<tr>
<td>2014 Planned</td>
<td>115</td>
<td>110</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>Unplanned</td>
<td>1.905</td>
<td>3.496</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2.020</td>
<td>3.605</td>
</tr>
<tr>
<td>2015 Planned</td>
<td>359</td>
<td>1.543</td>
<td>0.0046</td>
</tr>
<tr>
<td></td>
<td>Unplanned</td>
<td>2.292</td>
<td>1.659</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2.351</td>
<td>3.202</td>
</tr>
<tr>
<td>2016 Planned</td>
<td>167</td>
<td>547</td>
<td>0.0016</td>
</tr>
<tr>
<td></td>
<td>Unplanned</td>
<td>1.693</td>
<td>1.317</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.860</td>
<td>1.864</td>
</tr>
<tr>
<td>2017 Planned</td>
<td>306</td>
<td>1.496</td>
<td>0.0044</td>
</tr>
<tr>
<td></td>
<td>Unplanned</td>
<td>1.980</td>
<td>1.418</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2.286</td>
<td>2.914</td>
</tr>
</tbody>
</table>

In 2017, the indicators for unplanned interruptions are at the level of the previous five-year average. The values of indicators for unplanned interruptions were significantly influenced by major disorders in TS Bor 2, TS Niš 2 and TS Požega. Indicators for planned interruptions are significantly worse compared to the previous year, especially in terms of undelivered electricity. The increase in power failure, and undelivered electricity due to planned interruptions, is the result of planned works on the transmission system, connection of new elements of the transmission system and overhaul of existing elements.

In 2017 average duration of unplanned interruption amounted to 21.9 minutes, while planned interruption amounted to 23.13 minutes. Total average duration of supply interruption in 2017 amounted to 45.03 minutes.

3.4.2. Security of Distribution System Operation

The indicators for the estimation of discontinuity of delivery in the distribution network are the following:

- **SAIFI** [number of interruptions/user] – average frequency of interruptions per each user, calculated as a quotient of the cumulative number of interruptions and total number of users and
- **SAIDI** [min/user] – average duration of interruptions in minutes per user, calculated as a quotient of cumulative duration of interruption and total number of users.

Table 11 presents indicators of continuity of supply in the distribution system for the period 2013-2017.
Table 11: Indicators of continuity of supply in the distribution system [11], [17]

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIFI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.78</td>
<td>10.53</td>
<td>9.25</td>
<td>8.11</td>
<td>8.38</td>
</tr>
<tr>
<td>Unplanned</td>
<td>6.45</td>
<td>8.09</td>
<td>6.73</td>
<td>6.05</td>
<td>6.42</td>
</tr>
<tr>
<td>Planned</td>
<td>2.34</td>
<td>2.44</td>
<td>2.52</td>
<td>2.06</td>
<td>1.97</td>
</tr>
<tr>
<td>SAIDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>723.72</td>
<td>1,283</td>
<td>1,029</td>
<td>810</td>
<td>917</td>
</tr>
<tr>
<td>Unplanned</td>
<td>400.9</td>
<td>850</td>
<td>542</td>
<td>458</td>
<td>578</td>
</tr>
<tr>
<td>Planned</td>
<td>322.83</td>
<td>433</td>
<td>487</td>
<td>352</td>
<td>338</td>
</tr>
</tbody>
</table>

In 2017, indicators of continuity of supply in the distribution system in Republic of Serbia there was a deterioration compared to the previous year. The share of certain interruption causes within the number and duration of unplanned interruptions was on the level from 2015. The average frequency of unplanned interruptions was 6.42 interruptions per user, while the average duration of unplanned interruptions was increased to 578 minutes per average user. The average frequency of planned interruptions was reduced to 1.97 interruptions per user, and the average duration of planned interruptions was reduced to 338 minutes.

3.5. Mechanisms of Congestion Management in Transmission and Distribution Systems

3.5.1. Mechanisms of Congestion Management in Transmission Systems

Congestion in a transmission system is the phenomenon when on the market there is a greater demand for transmission capacity than offered. It is the situation during the auction of capacities when the total value of required capacities on a border, for a given direction and for a given auction period exceeds the value of available transmission capacity [16].

Allocation of cross-border transmission capacity is a mechanism for eliminating congestion between control areas of the neighbouring transmission system operators. At the border of the control area, PE EMS allocation of cross-border transmission capacity is performed in the form of explicit auctions (a market method through public tender for the allocation of available transmission capacity for a predefined border, direction and time period). There are two types of auctions [16]:

- Joint auctions in which the transmission system operator allocates all available cross-border transmission capacity between two control areas,
- EMS JSC as Serbian Transmission System and Market Operator organizes yearly, monthly and weekly auctions for 50% of the total available cross-border transfer capacity on borders with Albania and Montenegro. Neighbouring TSO organizes auctions for 50% of the total available cross-border transfer capacity.

EMS JSC was conducting allocation of cross-border transfer capacity on its own control area borders during 2017 in the following manner [16]:

7 Data for 2013 are taken from AERS documentation [10], and for 2014-2016 from EPS Distribucija documentation [16].
From 2015 joint auctions for transmission capacity allocation are organized on Serbia - Bosnia & Herzegovina border. Annual and monthly auctions are organized by EMS JSC and daily auctions and intraday allocations are organized by NOSBIH (B&H TSO).

From 2013 joint auctions for transmission capacity allocation are organized on Serbia - Romania border. In 2017 daily auctions are organized by EMS JSC, annual and monthly auctions and intraday auctions are organized by Romanian TSO CNTEE Transelectrica S.A.

From 2014 joint auctions for transmission capacity allocation are organized on Serbia - Bulgaria border. Annual and monthly auctions are organized by ESO (Bulgarian TSO) and daily auctions are organized by EMS JSC On Serbia - Bulgaria border intraday capacity allocations were not conducted due to technical problems of the Bulgarian TSO.

From 2011 joint auctions for transmission capacity allocation are organized on Serbia - Hungary border. In 2017 annual and monthly auctions are organized by MAVIR ZRt (Hungarian TSO), while daily auctions and intraday capacity allocations are organized by EMS JSC.

From 2014 joint auctions for transmission capacity allocation are organized on Serbia - Croatia border. Annual and monthly auctions are organized by HOPS (Croatian TSO) and daily and intraday auctions are organized by EMS JSC.

From 2017 on the border between Serbia and Macedonia, a joint allocation of the right to use the available transmission capacities is organized. In 2017, EMS JSC was responsible for organizing daily auctions, as well as for implementing the intraday allocation of cross-border transmission capacity. The annual and monthly auctions were organized by MEPSO (Macedonian transmission system operator).

3.5.2. Mechanisms for Congestion Management in Distribution Systems

Congestion in a distribution system means that during the electricity transfer by distribution system in a given work mode, an overload of a branch distribution network occurs (of a line or transformer) or violation of voltage limitations in distribution network nodes.

Congestion management in distribution system includes the following actions to remove congestion causes:

- Change of distribution grid topology,
- Cancellation of planned and suspension of ongoing works,
- Regulation of voltage with transformers 110/X kV,
- Temporary pre-adjustment of protection, which allows increase of power line transfer capacity,
- Coordinated implementation of management actions with neighboring distribution systems operators in order to restore normal operation,
- Limitation of production of the power plants that are connected to the distribution system.

Note: The distribution system of the voltage level less than 110 kV work as a radial one. Alternative power directions are used when the need arises.
3.6. Measures for Covering Peak Demand and Insufficient Amount of Provided Electricity

In case of endangered safety of supply to end customers due to insufficient supply in the market or the occurrence of other extraordinary circumstances, the Government shall prescribe the measures for restriction of electricity supply, or special conditions for import or export of electricity, the manner and conditions for the formation and control of prices, the obligation of supply exclusively to particular users, or special conditions for performing energy-related activities with the minimum disturbance of the energy market in the region (Energy Law [1]).

In order to cover peak consumption, in the event that one or more suppliers do not provide enough electricity, the transmission system operator is obliged to provide the missing amount of electricity.

The transmission system operator shall take the following actions:

- Include the contract on system services,
- Include contracts on energy in cases of accidents,
- Draw up daily plans of PE EPS work,
- Balance the system in real time.

In order to provide system services, EMS JSC with users of the transmission system made the contract for the provision of ancillary services, which includes primary reserve, secondary reserve, the third reserve, capacity for voltage regulation and capacity for establishment of transmission system after the collapse.

The amount of reserves is regulated by the Electricity Transmission Grid Code [8], based on the technical requirements in force in the interconnection Continental Europe. Details regarding the values of frequency containment reserve, frequency restoration reserve and reserve replacement are given in chapter 3.1.3.

By drawing up a daily work plan of electric energy system, the transmission system operator shall combine data of market players and then consider whether the suppliers have provided sufficient level of energy to supply the contractual reserve capacities based on their own demand forecasts. The transmission system operator reserves the spare capacity based on its own forecast of consumption. If this is not the case, the transmission system operator shall take the necessary measures, i.e. plan to engage the reserve capacities in the balancing mechanism or shall use the emergency power supply.

Balancing of electric energy system in real time is carried out through the activation of secondary and tertiary reserves. In this way, a balance is achieved between production, consumption and agreed cross-border exchanges in electricity. In addition to the contractual amount of spare capacities, the balancing mechanism includes all production capacities not engaged by the work plan, but which are available for production. If the country capacities are not enough to cover the consumption, the energy transmission system operator shall activate the emergency energy.

There are times when in spite of all measures, the required amount of electrical energy cannot be provided. In these cases, voltage reductions can be implemented in distribution system, by implementing voltage reductions on the low voltage side of the 110/X kV control transformers to a value of 5% less than the nominal voltage. In these cases, it can reduce the consumption by up to 200 MW. If that is not enough, the transmission system operator shall start limitation of electricity supply in accordance with the Energy Law and the Electricity Transmission Grid
36

The size of interconnection, as well as good connections with neighbouring transmission systems, make space for the national transmission system operator to be in a lower deficit for a shorter period of time.

3.7.1. Generation

During 2017, 24 small power plants were connected to the distribution network: 19 hydro power plants, 2 solar, 2 biogas and 1 wind power plants [17]. During the same period, preparations for the construction of block no. 3 in TPP Kostolac B, 350 MW are underway. Also, during 2017, activities on revitalization and modernization of HPP Đerdap 1 have been implemented. By the end of 2017, four aggregates - A1, A4, A5 and A6 - were revitalized which contribute with about 60 MW of additional installed power. In the HPP Zvornik during 2017, the revitalization of the second aggregate (out of a total of 4) was completed with power increase of 7.4 MW. During 2017, a number of preparatory activities related to the revitalization of HPP Potpeć, HPP Bistrica, HPP Vlasinska and HPP Đerdap 2 were carried out. These activities include the preparation of technical and tender documentation. About this and a number of other projects, see in Chapter 3.10.

3.7.2. Transmission

The Energy Law defines that transmission system operator is obliged to prepare and submit to AERS a ten-year development plan of the Republic of Serbia and three-year investment plan in the transmission system for every year. By the end 2017, EMS JSC prepared and submitted to AERS the Development Plan of the Republic of Serbia for the period 2018-2027 [21] and Investment Plan in the Transmission System which is currently in the phase of adoption.

Core activity of the Investments department in 2017 was the organisation and management of investment construction project, expansion, refurbishment and modernisation of the existing of transmission facilities (high-voltage substations and high voltage transmission lines. In addition, the investment activities included the realization of a significant number of procurements, as well as the implementation of connection projects.

The most important final operations in this period are [16]:

- The construction of the interconnection transmission line 2x400 kV Pančevo 2 - the border of Romania was completed at the end of the year 2017 and the transmission line was released under voltage.
- Works on reconstruction of 220 and 110 kV substations in TS 400/220/110 kV Smederevo 3 have been completed.
- The works on the reconstruction of the 35 kV facilities in TS 220/35 kV Bajina Bašta were completed.
- Works on reconstruction of 110 kV transmission line Čačak 1 - Čačak 2 have been completed.
- Works on reconstruction of 110 kV transmission line Čačak 1 - Čačak 3 have been completed.
Works on the reconstruction of sections "a" and "e" on the 110 kV transmission line Valjevo 1 - Valjevo 2 have been completed.

The works on the construction of the connecting 110 kV transmission line for the connection of the distribution transformer station TS Niš 15 (Doljevac) to the transmission system have been completed.

Works on the adaptation of TS 400/220 kV Obrenovac, which will be continued in 2018 and 2019.

Works on the construction of the 400 kV facility in TS 400/220/110 kV Smederevo 3, which will be continued in 2018 and 2019.

Both transformers 220/100 kV were replaced and works on the reconstruction of the 110 kV facility in TS 220/110/35 kV Kruševac 1 were in progress.

Works on the construction of the new TS 220/110 kV Bistrica started.

Works on the reconstruction and adaptation of transmission line sections 2x110 kV Belgrade 3 - TPP Kostolac, which will be continued in 2018 and 2019.

Works on the construction of the connected 110 kV transmission line for the TS Kraljevo 3 distribution transformer substation (Ribnica) have begun.

The connection of the distribution transformer station TS Niš 15 (Doljevac) to the transmission system was realized.

The first phase of reconstruction of the SS 110 kV Drmno and TS 220/110/35 kV Srbobran was completed.

Among other investment projects that are in progress, the most important investment and strategic projects for EMS JSC are [16]:

- The location conditions for TS 220/35 kV Bajina Bašta were obtained, raising on the 400 kV voltage level. Preparation of documentation was done.
- The location conditions were realized and a positive report from the audit commission for the reconstruction of the SS 400 kV Djerdap 1 was received.
- Activities for development of planning and technical documentation for seven cable lines have been continued.
- The solution for the reconstruction of the 110 kV transmission line Bor 2 – Zaječar 2 was obtained.

These realized investment activities and investments planned for realization in 400 and 110 kV networks, as well as daily actions at the level of operational management, in 2017 EMS JSC continued activities to reduce energy losses in the network.

During 2017, preparatory activities were carried out on the following investment projects which, after commissioning, will provide two-way power supply and meet the safety analysis criterion ("N-1"):

- Cable 110 kV TS Novi Sad 5 - TS Novi Sad 7,
- The reconfiguration of the 110 kV transmission line at TS Niš 5,
- Equipping a second system (1188B) to a OHL 2x110 kV no. 1188AB TS Niš 10 – TS Niš 13,
- OHL 110 kV TS Bela Crkva - TS Veliko Gradište,
Security of Supply Statement – Republic of Serbia

- OHL 110 kV TS Ivanjica - TS Guča,
- OHL 110 kV TS Ada - TS Kikinda 2,
- OHL 110 kV TS Ljubovija - state border - TS Srebrenica (BiH), and
- Introduction of OHL 110 kV no. 105/2 TPP Morava - TS Jagodina 4 in TS Jagodina 3.

3.7.3. Distribution

In line with the Energy Law [1], distribution system operator is obliged to prepare and submit to AERS an annual plan for development of distribution system for a period of at least five years, which should be harmonized with plan for development of transmission system and requirements for connection to distribution system. Development of mentioned development plan is in progress.

Energy Law [1] determines that the distribution system operator, in addition to the development plan, should adopt a plan for the take-over of measuring devices, measuring boxes, installations and equipment in measuring boxes, connection lines and other devices that are part of the connections in the buildings of existing buyers or producers, for each year. This obligation for the period 2017 - 2020 has been fulfilled by distribution system operator and delivered to AERS in December 2016. In 20th June, 2017 AERS council issued a Decision on the approval of the plan [18]. Energy Law (Article 404) [1] defines that all these devices should be owned by distribution system operator by the end of 2020 at the latest. Acquisition of measuring points by distribution system operator and technological improvement of measuring infrastructure will ensure the smooth functioning of market and a better offer in electricity market [1]. During the year 2017 the total number of taken measuring devices and other equipment is 19,444 [17].

In order to increase the security of energy supply investment investment activities as well as other activities were aiming at the completion of initiated investments and new investments in network expansion, revitalisation or replacement of existing old-fashioned equipment in the distribution network, especially transformer stations 110/X kV/kV transferred from EMS JSC as well as other measures in terms of modernisation of operations and business activities.

The following works were either completed or initiated within the distribution systems [17]:

- Replacement of transformer 110/35 kV with transformer 110/20 kV were completed (with a same power) in TS Alibunar and Ruma 1.
- Construction of 319 transformer stations on the medium-voltage level was completed, with total installed capacity of 121.56 MVA.
- Construction of 512.03 km of medium-voltage distribution network was completed.
- Construction of 702.29 km of low voltage distribution network was completed.

The primary goal of distribution system operator is to improve the measurement system for users whose facilities are connected to the medium voltage network, and for users whose objects are connected to the low voltage network, those with active and reactive energy and monthly maximum power. Smart grids and measurement systems will enable high reliability and quality level of delivered electricity. They will stimulate better consumption management and more dynamic electricity market, as well as considerable reduction of technical and commercial losses.

With the investment activities in 2017 (increased grid capacity, replacement of invalid meters, dislocation of metering points), better control over electricity theft and increasing of the collection rate, the distribution system operators initiated the trend of reduction of energy loss in
Security of Supply Statement – Republic of Serbia

girds. However, that activities was not sufficient and they did not match the level of losses and the need to cut the losses to an acceptable level in technical terms.

3.8. Planned Electricity Consumption and Production / Method of Providing the Missing Quantities in the next Five-Years Period

3.8.1. Realized Consumption and Production

In 2017 total gross electricity production reached the value of 37 TWh (71% from TPP and 26% from HPP). CHP plants, as a rule, were in operation in accordance with heating need in winter period and they produced almost the same electricity compared to the value from previous two years.

Production from small power plants connected to a distribution network is relatively small, but due to a connection of new capacities, regardless of hydrological conditions variation, production increases from year to year. Production from these power plants in 2017 amounted to 809 GWh.

In 2017 in Serbia was imported 6,549 GWh (with transit), and exported 5,724 GWh (with transit).

End customer electricity consumption in 2017 reached the value of 27,792 GWh, whereby the highest consumption was recorded in the household sector (51%) and the industry and construction sector (28%).

When it comes to net imports and exports, 2017 is worse than the previous year. It is easy to see from the comparative balance that cumulative imports (together with transit) increased by 29.22%, ie, by 1.480 GWh, while cumulative exports decreased by 1.266 GWh (in 2016, it was higher than in 2017 by 20.55%). PE EPS has a dominant influence on the balance of electricity in the Republic of Serbia. By analyzing its achieved balance for 2017 is a total loss of 2,458,5 GWh due to less production in the TENT branch due to the insufficient coal supply from MB Kolubara, as well as due to poor coal quality and low thermal power than planned. A particularly bad situation was in the first quarter of the year when the production capacity of the TENT branch was the largest and this minus could not be compensated in the coming year.

Table 12 presents electricity balance in the Republic of Serbia for the period from 2013 until 2017.
Table 12: Balance of Electricity from 2013 to 2017 [13], [25]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross production</td>
<td>39,877</td>
<td>34,061</td>
<td>38,299</td>
<td>39,343</td>
<td>37,043</td>
</tr>
<tr>
<td>Hydro power plants</td>
<td>10,852</td>
<td>11,617</td>
<td>10,783</td>
<td>11,520</td>
<td>9,752</td>
</tr>
<tr>
<td>Thermal power plants</td>
<td>28,620</td>
<td>22,073</td>
<td>27,133</td>
<td>27,191</td>
<td>26,414</td>
</tr>
<tr>
<td>Combined heat and power plants</td>
<td>202</td>
<td>75</td>
<td>53</td>
<td>140</td>
<td>291</td>
</tr>
<tr>
<td>Other power plants</td>
<td>202</td>
<td>295</td>
<td>330</td>
<td>491</td>
<td>585</td>
</tr>
<tr>
<td>Total import (including transit)</td>
<td>4,077</td>
<td>7,008</td>
<td>6,303</td>
<td>5,068</td>
<td>6,549</td>
</tr>
<tr>
<td>Total export (including transit)</td>
<td>6,614</td>
<td>5,445</td>
<td>7,221</td>
<td>6,990</td>
<td>5,724</td>
</tr>
<tr>
<td>Losses</td>
<td>5,500</td>
<td>5,163</td>
<td>5,169</td>
<td>4,808</td>
<td>4,806</td>
</tr>
<tr>
<td>Consumption in the energy sector including own use of TPP and HPP</td>
<td>4,937</td>
<td>4,302</td>
<td>5,138</td>
<td>5,280</td>
<td>5,270</td>
</tr>
<tr>
<td>Hydro power plants</td>
<td>60</td>
<td>90</td>
<td>86</td>
<td>91</td>
<td>82</td>
</tr>
<tr>
<td>Pump</td>
<td>1,007</td>
<td>898</td>
<td>1,090</td>
<td>1,029</td>
<td>938</td>
</tr>
<tr>
<td>Термоелектране</td>
<td>2,581</td>
<td>2,017</td>
<td>2,529</td>
<td>2,565</td>
<td>2,586</td>
</tr>
<tr>
<td>Combined heat and power plants</td>
<td>42</td>
<td>22</td>
<td>18</td>
<td>25</td>
<td>42</td>
</tr>
<tr>
<td>Industrial plants</td>
<td>25</td>
<td>32</td>
<td>26</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>District heating plants</td>
<td>170</td>
<td>80</td>
<td>97</td>
<td>218</td>
<td>193</td>
</tr>
<tr>
<td>Oil and gas production</td>
<td>234</td>
<td>82</td>
<td>93</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>Refineries</td>
<td>236</td>
<td>257</td>
<td>243</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Coal mines</td>
<td>604</td>
<td>541</td>
<td>570</td>
<td>600</td>
<td>590</td>
</tr>
<tr>
<td>Coal transformation</td>
<td>214</td>
<td>217</td>
<td>282</td>
<td>313</td>
<td>366</td>
</tr>
<tr>
<td>Other</td>
<td>87</td>
<td>90</td>
<td>72</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Energy available for final consumption</td>
<td>26,903</td>
<td>26,158</td>
<td>27,073</td>
<td>27,333</td>
<td>27,792</td>
</tr>
<tr>
<td>Final consumption</td>
<td>26,903</td>
<td>26,158</td>
<td>27,073</td>
<td>27,333</td>
<td>27,792</td>
</tr>
<tr>
<td>Industry+Construction</td>
<td>7,079</td>
<td>7,156</td>
<td>7,423</td>
<td>7,731</td>
<td>7,861</td>
</tr>
<tr>
<td>Transport</td>
<td>478</td>
<td>336</td>
<td>351</td>
<td>352</td>
<td>358</td>
</tr>
<tr>
<td>Households</td>
<td>14,146</td>
<td>13,802</td>
<td>14,062</td>
<td>13,931</td>
<td>14,165</td>
</tr>
<tr>
<td>Agriculture</td>
<td>301</td>
<td>298</td>
<td>317</td>
<td>314</td>
<td>319</td>
</tr>
<tr>
<td>Other users</td>
<td>4,899</td>
<td>4,566</td>
<td>4,920</td>
<td>5,005</td>
<td>5,089</td>
</tr>
</tbody>
</table>

3.8.2. Method of Providing the Missing Quantities in the next Five-Years Period

According to Strategy [2], electricity consumption growth in relation to the reference year (2010) is predicted to be around 5.7% by 2020, ie 10.5% by 2025 and 16.3% by 2030.

As it will be analyzed in more detail later, some of the oldest thermal power plants with low efficiency and significant emission of hazardous gases will be withdrawn.

According to Strategy [2] and Program [1], it is forseen construction of larger number of wind power plants, hydro power plants, and combined heat and power plants. From the other side, increased construction of renewable energy sources can help to certain extent in satisfaction of future electricity needs.

Modernization and revitalization of existing hydro and thermal plants will enable greater flexibility of their work and increase of electricity production.

The aforementioned activities are expected to provide for the fulfillment of future electricity needs in the medium term (see sections 3.3.1, 3.10 and 3.13).
3.9. Security Supply Forecast for the Next Five to Fifteen Years

The national transmission system operator shall be obliged to guarantee, with the appropriate national institutions, the appropriate security of electricity supply. Security of supply is defined as the ability of the power system to meet consumption needs at any time. For assessment of production adequacy in the Republic of Serbia EMS JSC has so far used the modified methodology of the ENTSO-E (for making the long-term reports of adequacy) [19].

Regulation (EC) no. 714/2009 [20] defines, among other things, the obligation to create an SO&AF (Scenario of Outlook and Adequacy Forecast) of the report every two years, but due to practical needs, this report is made every year. It is a follower of previous reports: UCTE System Adequacy Forecast and ETSO Power System Adequacy.

The integration of a large number of generating capacity in the category of renewable energy sources, end of process for forming the internal electricity market at EU level, new technologies for energy storage, and the response of demand side management and constant changes in energy policies require permanent modification ENTSO-E methodology for the assessment of conformity production and consumption of electricity in the short and longer term. One of the main changes compared to the classic method of conformity assessment of production and consumption, which is valorized by the moment of maximum consumption in the power system, is the need to consider other scenarios of electricity consumption because of the unpredictable production of some types of renewable energy sources, actually loading of transmission system at selected times other than the moment of maximum load. At this point a safety assessment is carried out in two typical cases:

- Winter maximum and
- The summer maximum.

These typical cases of load forecast are part of the ten-year plans of the member of ENTSO-E, which is updated every year. Similarly, using two scenarios of electricity generation in order to better evaluated the extent of uncertainty in the prediction of future production capacity and evaluate the risk of security of supply in the forecasting period: scenario of realistic development of production and conservative scenario that individually prepare transmission system operators based on the plans of electricity producers who are planning connection to the transmission system.

Conservative scenario includes additional investments in production capacities, which are considered certain (already being implemented construction or in which the purchase of equipment can not fail). As for the phasing out of production capacity, most likely the plan of release will be adopted, which is not only based on the official data of individual producers, but also takes into account information about the age of some production facilities.

For the load forecasts in this scenario the best national estimate available to the transmission system operator is adopted, taking into account the maximum expected rise in consumption based on available development plans of electrical networks.

Scenario of realistic development of production, in addition to production capacity covered by conservative scenario, includes the planned investment on production capacity, which can be considered sufficiently probable according to the belief of the transmission system. Also, if there is no official information on the exit of a unit from the system, the scenario of realistic development of production consider it available in the forecasting period (at the old production capacity is calculated on the extension of life expectancy). The load is predicted in the same manner as in conservative scenario. For scenario of realistic development of production, during forecasts of new production capacity, it is necessary to take into account the national targets for
the participation of renewable energy sources, as well as stimulating measures that work in this direction. However, the transmission system operator has to make a realistic forecast of future production capacity, even if defined national goals were not met. In the context of the assessment of conformity of production and consumption of electricity gives the estimate of transmission capacity for export and import of electricity.

A conservative scenario function is to assess the lack of capacity in production at a national (and European) level in order to satisfy future consumption. Scenario of realistic development of production function is to assess whether the expected level of investment in production capacity are sufficient to meet future consumption.

Of course, in order to adequately assess the possibility of meeting the projected consumption with the planned production, need for the reserve production, expected outages and repairs of production units, capacity in which the forecasting period can not be used for various other reasons must be taken into account.

In assessing the compliance of the production capacities, tables in a format such shown in Table 13 and Table 14 (relating to the period of 2017-2027 for the Republic of Serbia) need to be filled. Based on the data presented in Table 13 and Table 14 following can be concluded:

In the Republic of Serbia, in 2027, compared to the current situation, the installed capacity connected to the transmission system will increase in the amount of:

- Scenario of realistic development of production - 1,300 MW
- Conservative scenario - 1,056 MW.

For the winter peak regime in the realistic scenario, the remaining production capacity is negative until 2019, and after that it is positive until the end of the observed period (Table 13). The lowest value is forecast for 2018 (-168 MW), while the values after 2019 range between 150 MW and 520 MW.

The conservative scenario for the winter peak regime is more critical, so the remaining production capacity is negative until 2019, as well as from 2024 to 2027 (Table 14). This is the result of assumed operation interrupt of TPP Kolubara, TPP Morava and TPP Kostolac A, as well as peak load growth.

Therefore, in periods when the residual production capacity is negative, electricity will need to be imported. The value of the available import capacity is sufficient to allow undisturbed imports of electricity.

As for the summer peak regime, it is not critical in any scenario (Table 13 and Table 14). Values of the remaining production capacity range from 770 MW to 1,580 MW.
Table 13: Indicators of compliance of production and consumption of electricity in scenario of realistic development of production for the Republic of Serbia [21]

<table>
<thead>
<tr>
<th>Winter maximum</th>
<th>National energy data (MW)</th>
<th>2017</th>
<th>2020</th>
<th>2025</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fossil Fuels (2+3)</td>
<td>4,076</td>
<td>4,064</td>
<td>4,109</td>
<td>4,109</td>
<td></td>
</tr>
<tr>
<td>2. Lignite</td>
<td>3,886</td>
<td>3,910</td>
<td>3,955</td>
<td>3,955</td>
<td></td>
</tr>
<tr>
<td>3. Gas</td>
<td>190</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>4. Renewable Energy Sources (Wind power plants)</td>
<td>0</td>
<td>809</td>
<td>983</td>
<td>983</td>
<td></td>
</tr>
<tr>
<td>5. Hydro power (6+7+8)</td>
<td>2,969</td>
<td>3,091</td>
<td>3,091</td>
<td>3,091</td>
<td></td>
</tr>
<tr>
<td>6. Run-of-river hydro power plant</td>
<td>1,948</td>
<td>2,070</td>
<td>2,070</td>
<td>2,070</td>
<td></td>
</tr>
<tr>
<td>7. Storage hydro power plant</td>
<td>407</td>
<td>407</td>
<td>407</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>8. Pumped storage plants</td>
<td>614</td>
<td>614</td>
<td>614</td>
<td>614</td>
<td></td>
</tr>
<tr>
<td>9. Total (1+4+5)</td>
<td>7,045</td>
<td>7,964</td>
<td>8,183</td>
<td>8,183</td>
<td></td>
</tr>
<tr>
<td>10. Unusable installed capacity</td>
<td>200</td>
<td>593</td>
<td>721</td>
<td>721</td>
<td></td>
</tr>
<tr>
<td>11. Ancillary services reserve</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>12. Overhauls</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13. Forced outages</td>
<td>404</td>
<td>399</td>
<td>324</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>14. Unavailable Capacity (10+11+12+13)</td>
<td>1,064</td>
<td>1,452</td>
<td>1,505</td>
<td>1,505</td>
<td></td>
</tr>
<tr>
<td>15. Reliable Available Capacity (9-14)</td>
<td>5,981</td>
<td>6,512</td>
<td>6,678</td>
<td>6,678</td>
<td></td>
</tr>
<tr>
<td>16. Peak load</td>
<td>6,133</td>
<td>6,312</td>
<td>6,468</td>
<td>6,525</td>
<td></td>
</tr>
<tr>
<td>17. Remaining power capacity</td>
<td>-152</td>
<td>200</td>
<td>210</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>18. Simultaneous Importable Capacity for Adequacy</td>
<td>3,832</td>
<td>4,432</td>
<td>4,832</td>
<td>4,832</td>
<td></td>
</tr>
<tr>
<td>20. Minimum power transfer capacity</td>
<td>704</td>
<td>796</td>
<td>818</td>
<td>818</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer maximum</th>
<th>National energy data (MW)</th>
<th>2017</th>
<th>2020</th>
<th>2025</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fossil Fuels (2+3)</td>
<td>4,179</td>
<td>4,139</td>
<td>4,184</td>
<td>4,184</td>
<td></td>
</tr>
<tr>
<td>2. Lignite</td>
<td>3,961</td>
<td>3,985</td>
<td>4,030</td>
<td>4,030</td>
<td></td>
</tr>
<tr>
<td>3. Gas</td>
<td>218</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>4. Renewable Energy Sources (Wind power plants)</td>
<td>0</td>
<td>809</td>
<td>983</td>
<td>983</td>
<td></td>
</tr>
<tr>
<td>5. Hydro power (6+7+8)</td>
<td>2,969</td>
<td>3,091</td>
<td>3,091</td>
<td>3,091</td>
<td></td>
</tr>
<tr>
<td>6. Run-of-river hydro power plant</td>
<td>1,948</td>
<td>2,070</td>
<td>2,070</td>
<td>2,070</td>
<td></td>
</tr>
<tr>
<td>7. Storage hydro power plant</td>
<td>407</td>
<td>407</td>
<td>407</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>8. Pumped storage plants</td>
<td>614</td>
<td>614</td>
<td>614</td>
<td>614</td>
<td></td>
</tr>
<tr>
<td>9. Total (1+4+5)</td>
<td>7,148</td>
<td>8,039</td>
<td>8,258</td>
<td>8,258</td>
<td></td>
</tr>
<tr>
<td>10. Unusable installed capacity</td>
<td>200</td>
<td>677</td>
<td>823</td>
<td>823</td>
<td></td>
</tr>
<tr>
<td>11. Ancillary services reserve</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>12. Overhauls</td>
<td>627</td>
<td>621</td>
<td>628</td>
<td>628</td>
<td></td>
</tr>
<tr>
<td>13. Forced outages</td>
<td>353</td>
<td>350</td>
<td>284</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>14. Unavailable Capacity (10+11+12+13)</td>
<td>1,640</td>
<td>2,108</td>
<td>2,195</td>
<td>2,195</td>
<td></td>
</tr>
<tr>
<td>15. Reliable Available Capacity (9-14)</td>
<td>5,508</td>
<td>5,931</td>
<td>6,063</td>
<td>6,063</td>
<td></td>
</tr>
<tr>
<td>16. Peak load</td>
<td>4,389</td>
<td>4,570</td>
<td>4,773</td>
<td>4,851</td>
<td></td>
</tr>
<tr>
<td>17. Remaining power capacity</td>
<td>1,119</td>
<td>1,361</td>
<td>1,290</td>
<td>1,212</td>
<td></td>
</tr>
<tr>
<td>18. Simultaneous Importable Capacity for Adequacy</td>
<td>3,675</td>
<td>4,175</td>
<td>4,475</td>
<td>4,475</td>
<td></td>
</tr>
<tr>
<td>19. Simultaneous Exportable Capacity for Adequacy</td>
<td>3,437</td>
<td>3,947</td>
<td>4,247</td>
<td>4,247</td>
<td></td>
</tr>
<tr>
<td>20. Minimum power transfer capacity</td>
<td>715</td>
<td>804</td>
<td>826</td>
<td>826</td>
<td></td>
</tr>
</tbody>
</table>
Table 14: Indicators of compliance of production and consumption of electricity in conservative scenario of production for the Republic of Serbia [21]

<table>
<thead>
<tr>
<th>Winter maximum</th>
<th>National energy data (MW)</th>
<th>2017</th>
<th>2020</th>
<th>2025</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fossil Fuels (2+3)</td>
<td>4,076</td>
<td>4,006</td>
<td>3,865</td>
<td>3,865</td>
<td></td>
</tr>
<tr>
<td>2. Lignite</td>
<td>3,886</td>
<td>3,852</td>
<td>3,711</td>
<td>3,711</td>
<td></td>
</tr>
<tr>
<td>3. Gas</td>
<td>190</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>4. Renewable Energy Sources (Wind power plants)</td>
<td>0</td>
<td>743</td>
<td>983</td>
<td>983</td>
<td></td>
</tr>
<tr>
<td>5. Hydro power (6+7+8)</td>
<td>2,969</td>
<td>3,078</td>
<td>3,091</td>
<td>3,091</td>
<td></td>
</tr>
<tr>
<td>6. Run-of-river hydro power plant</td>
<td>1,948</td>
<td>2,057</td>
<td>2,070</td>
<td>2,070</td>
<td></td>
</tr>
<tr>
<td>7. Storage hydro power plant</td>
<td>407</td>
<td>407</td>
<td>407</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>8. Pumped storage plants</td>
<td>614</td>
<td>614</td>
<td>614</td>
<td>614</td>
<td></td>
</tr>
<tr>
<td>9. Total (1+4+5)</td>
<td>7,045</td>
<td>7,827</td>
<td>7,939</td>
<td>7,939</td>
<td></td>
</tr>
<tr>
<td>10. Unusable installed capacity</td>
<td>200</td>
<td>545</td>
<td>721</td>
<td>721</td>
<td></td>
</tr>
<tr>
<td>11. Ancillary services reserve</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>12. Overhauls</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13. Forced outages</td>
<td>404</td>
<td>354</td>
<td>305</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>14. Unavailable Capacity (10+11+12+13)</td>
<td>1,064</td>
<td>1,359</td>
<td>1,486</td>
<td>1,486</td>
<td></td>
</tr>
<tr>
<td>15. Reliable Available Capacity (9-14)</td>
<td>5,981</td>
<td>6,468</td>
<td>6,453</td>
<td>6,453</td>
<td></td>
</tr>
<tr>
<td>16. Peak load</td>
<td>6,156</td>
<td>6,424</td>
<td>6,760</td>
<td>6,893</td>
<td></td>
</tr>
<tr>
<td>17. Remaining power capacity</td>
<td>-175</td>
<td>-44</td>
<td>-307</td>
<td>-440</td>
<td></td>
</tr>
<tr>
<td>18. Simultaneous Importable Capacity for Adequacy</td>
<td>3,832</td>
<td>4,432</td>
<td>4,832</td>
<td>4,832</td>
<td></td>
</tr>
<tr>
<td>20. Minimum power transfer capacity</td>
<td>704</td>
<td>783</td>
<td>794</td>
<td>794</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer maximum</th>
<th>National energy data (MW)</th>
<th>2017</th>
<th>2020</th>
<th>2025</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fossil Fuels (2+3)</td>
<td>4,179</td>
<td>4,081</td>
<td>3,903</td>
<td>3,903</td>
<td></td>
</tr>
<tr>
<td>2. Lignite</td>
<td>3,961</td>
<td>3,927</td>
<td>3,749</td>
<td>3,749</td>
<td></td>
</tr>
<tr>
<td>3. Gas</td>
<td>218</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>4. Renewable Energy Sources (Wind power plants)</td>
<td>0</td>
<td>743</td>
<td>983</td>
<td>983</td>
<td></td>
</tr>
<tr>
<td>5. Hydro power (6+7+8)</td>
<td>2,969</td>
<td>3,078</td>
<td>3,091</td>
<td>3,091</td>
<td></td>
</tr>
<tr>
<td>6. Run-of-river hydro power plant</td>
<td>1,948</td>
<td>2,057</td>
<td>2,070</td>
<td>2,070</td>
<td></td>
</tr>
<tr>
<td>7. Storage hydro power plant</td>
<td>407</td>
<td>407</td>
<td>407</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>8. Pumped storage plants</td>
<td>614</td>
<td>614</td>
<td>614</td>
<td>614</td>
<td></td>
</tr>
<tr>
<td>9. Total (1+4+5)</td>
<td>7,148</td>
<td>7,902</td>
<td>7,977</td>
<td>7,977</td>
<td></td>
</tr>
<tr>
<td>10. Unusable installed capacity</td>
<td>200</td>
<td>622</td>
<td>823</td>
<td>823</td>
<td></td>
</tr>
<tr>
<td>11. Ancillary services reserve</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>12. Overhauls</td>
<td>627</td>
<td>612</td>
<td>585</td>
<td>585</td>
<td></td>
</tr>
<tr>
<td>13. Forced outages</td>
<td>353</td>
<td>311</td>
<td>264</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>14. Unavailable Capacity (10+11+12+13)</td>
<td>1,640</td>
<td>2,005</td>
<td>2,132</td>
<td>2,132</td>
<td></td>
</tr>
<tr>
<td>15. Reliable Available Capacity (9-14)</td>
<td>5,508</td>
<td>5,897</td>
<td>5,845</td>
<td>5,845</td>
<td></td>
</tr>
<tr>
<td>16. Peak load</td>
<td>4,401</td>
<td>4,633</td>
<td>4,947</td>
<td>5,073</td>
<td></td>
</tr>
<tr>
<td>17. Remaining power capacity</td>
<td>1,107</td>
<td>1,264</td>
<td>898</td>
<td>772</td>
<td></td>
</tr>
<tr>
<td>18. Simultaneous Importable Capacity for Adequacy</td>
<td>3,675</td>
<td>4,175</td>
<td>4,475</td>
<td>4,475</td>
<td></td>
</tr>
<tr>
<td>20. Minimum power transfer capacity</td>
<td>715</td>
<td>790</td>
<td>798</td>
<td>798</td>
<td></td>
</tr>
</tbody>
</table>

3.10. Investments in Capacity for the Production of Electricity

As a signatory to the Treaty of establishment of the Energy Community, the Republic of Serbia has committed, among other things, to apply the provisions of the Directive of Large Combustion Plants 2001/80/EC in accordance with the deadlines defined by the Treaty itself, that is, until 01.01.2018.
The Directive refers to combustion plants with a power of greater than or equal to 50 MWth (all thermal power plants within PE EPS are in the category of large furnaces, that is, they have power greater than 50 MWth). The aim of the Directive is to reduce emissions of polluting substances from large combustion plants into the air.

The Ministerial Council of the Energy Community adopted two following Decisions on October 23th in 2013:

- Decision D/2013/05MC-EnC for the rules of implementation of the Directive of Large Combustion Plants (Decision D/2013/05MC-EnC LCP Directive on implementing rules)

By Decision D/2013/05MC-EnC it is enabled for the contrys that are signatories of the Treaty of establishing the Energy Community to use two mechanisms for the implementation of the Directive of Large Combustion Plants, which are defined within the Directive itself, as follows:

- The implementation of the National Emission Reduction Plan (NERP) in period from 01.01.2018. to 31.12.2027. The implementation of NERP has a purpose to harmonize emissions from existing combustion plants with emission’s limit values - ELV defined by the Industrial Emissions Directive by the 31.12.2027.
- Implementation of the plant limited operation mechanism, so-called opt-out mechanism (20,000 hours of work between 2018 and 2023). After the expiration of the opt out period, the plant should be either shut off or must be harmonized with the ELV for new plants based on the Industrial Emissions Directive.

By the end of 2023, it is planned to withdraw thermo-blocks from the plant: TPP Kolubara A1, A2, A3 and A5 (block A4 is out of operation since 2009), TPP Morava. TPP Kostolac A1 and A2 (although Kostolac A1 and A2 are still analyzing the cost-effectiveness of withdrawal, ie reconstruction). The total power of the mentioned capacities at the border of the transmission system is 605 MW. Based on the achievement of the electric power portfolio of PE EPS for 2016, the mentioned capacities produced a total of 3,042.2 GWh, and in 2017 they produced 3,234 GWh. Therefore, taking average value in these two years, we can consider that due to the withdrawal of these blocks, the annual production of electricity after 2023 will be lower by 3.1 TWh. It should be said that the remodeling program for 2017 did not include blocks A1 and A2 in the TPP Kolubara A, which means that at that moment there was no intention for their re-entry on the network.

In order to improve environmental protection in accordance with the obligations under the Energy Community Agreement, in the sector for the production of fossil fuels, it is planned that emissions of sulfur dioxide, nitrogen oxides and powdered substances are reduced to the prescribed emission limit values defined by the said regulation [22]. The issue of emission to the prescribed limit values is part of the National Emission Reduction Plan in accordance with the Decision of the Ministerial Council of the European Union E3 D/2013/05/MC-EnC and D/2013/06/MC-EnC. The implementation of the National emission reduction plan is planned in the period January 1, 2018 - December 31, 2027.

On the reduction of the available power on the border of transmission will also be affected by the projects for the construction of a flue gas desulphurization plant on thermal power plants that will remain in operation after 2023. This facility for TPP Kostolac B was completed in July 2017 (the value of the project is approximately 130.5 million dollars), and for the TENT A3-A6 a
contract for the implementation of the facility was signed in September 2017 and the works have started. Realization of this facility is expected for TENT B. According to the available technical data, the own consumption of desulphurization facility will affect the increase in 5-6% in own consumption of the blocks that remain in, or approximately 1.1 TWh per year. This is supported by the project in the TPP Kostolac B, where for the needs of the desulphurization plant it was necessary to install two additional transformers with a power of 2x25 MVA.

In order to implement the mentioned directive and ensure the realization of the goals defined by the Strategy [2] and the Program [3] until year 2023, as well as the balancing of energy deficits resulting from the withdraw of blocks and own consumption of desulphurization plants, the construction and entry into operation of several larger production capacities is planed.

The construction of seven wind farms with total installed capacity up to 500 MW with an estimated annual production of 1,317 GWh (Alibunar, Malibunar, Plandište 1, Kovačica, Čibuk 1, Kosava and Kostolac), the CHP Pančevo (installed capacity of 140 MW and an annual production of 910 GWh) and unit B3 in the TPP Kostolac B with installed capacity of 350 MW and an estimated annual production of 2,200 GWh is planed in the period from 2017 until 2020. Production from these new capacities should increase total estimated electricity production for 4,427 GWh. In this way, the production from the plant witch outage is planned, due to the end of their exploitation period, would be successfully substituted.

In addition to the steam-gas CHP Pančevo and wind farms that are especially important for meeting the goals related to renewable energy sources, the realization of the construction of the new unit B3 in thermal power plant Kostolac B will be of great importance, which will contribute to the increase of production capacities and thus to the improvement of energy stability in the Republic of Serbia. The project also includes the extension of the Drmno surface mine, that is, the increase the coal production from 9 to 12 million tonnes per a year. The value of the TPP Kostolac B3 project is 715.6 million $ (about 81,100 million of RSD). The project is financed from two sources: 85% of the project value will be financed from the loan of the Chinese EKSIM Bank under preferential terms with the guarantee approved by State; the rest of the project value is provided from the funds of PE EPS (15%). The deadline for realization of the project is 58 months. TPP Kostolac B3 unit meets all environmental protection standards prescribed by the laws of the Republic of Serbia. The realization of these construction is of great importance for the development of the energy sector of the Republic of Serbia due to the reliable and secure supply of energy products and energy as well as the establishment of conditions for reliable and safe operation and sustainable development of the energy sector in general. All that directly affects the competitiveness and export ability of the Serbian economy.

In addition to the construction of new capacities, the continuation of the hydro power plants revitalization with the increase of the power delivered to the transmission system is planned:

- Aggregates A3 and A4 in HPP Zvornik with new installed power of 2x31.4 MW (power increase 7.4 MW by aggregate). The revitalization of the aggregate A3 is expected to be completed on December 31th in 2018 (revitalization began on January 11th, 2018 as the 3rd stage of revitalization of HPP Zvornik). The fourth stage (revitalization of the A4 aggregate) is planned for 2019.

- Aggregates A2 and A3 in HPP Đerdap 1 with new installed power of 2x205 MW, (power increase 15 MW by aggregate). The revitalization of the aggregate A2 is completed on September 1st in 2018. Complete revitalization (including A3 aggregate) is expected during the year 2021.

- Aggregates A1, A2 and A3 in HPP Potpeć with new installed power of 3x19 MW (power increase 2 MW by aggregate) with new aggregate A4 - 13 MW.
In 2017, the planned revitalization of the TPPNT A4, with an increase of installed capacity from 308.5 MW to 335.3 MW was not carried out. This project is transferred to 2018 and implemented in the period 03.03.2018 - 30.07.2018.

Aggregates A1 and A2 in HPP Bistrica with new installed power of 2x57 MW and aggregates in HPP Vlasina with new installed power of 137 MW (power increase 8 MW in total), etc.

It is planned that reconstructed and new production units should be realized using modern technologies that provide optimal level of energy efficiency in the electricity generation sector. They would replace the old, energy-inefficient thermal units that are getting out of operation.

Among other activities the following should be highlighted:

- Implementation of the project for the construction of a flue gas desulphurization facility on blocks A3-A6 in TENT A started. The business is worth 167 million €, and it is realized within the agreement of the Government of the Republic of Serbia and Japan. Based on this agreement, PE EPS and the Japan International Cooperation Agency (JICA) signed a loan agreement to finance the project. In the consortium which will implement the project are the Japanese corporation ITOC HU, Mitsubishi Hitachi Power System Europe and company MPP Jedinstvo from Sevojno.

- Preparatory activities for the start of project realization for reconstruction of the evaporation system for TENT A

- It was finalized and adopted by the Expert Council of the PE EPS study of validity and the conceptual project of revitalization for blocks A1 and A2 in TENT A in December 2017. The study predicts the extension of the working life of blocks for the next 100,000 hours, including the possibility of working in accordance with environmental regulations.

- The elaboration of the feasibility study and the conceptual project of revitalization for blocks A1 and A2 in the Kostolac A thermal power plant is in progress and its completion is expected in October 2018.

Among the mentioned projects those who are ecological stand out. They are highly investmentally positioned and their realization is in full progress. The mentioned projects enable the retention of existing capacities in the system and the placement of energy from the PE EPS power plants on the regional market, as they provide the necessary environmental conditions in accordance with the EU directives.

3.11. Development Plan and Investments in Transmission System for the next Three to Fifteen Years

Development of transmission capacities includes reconstruction of existing and construction of new transmission capacities so that a balanced, sustainable and timely development of the transmission system is achieved, with the aim of connecting new conventional and renewable sources of electricity, as well as the facilities of other users of the transmission system.

Strategic and developmental importance at the national, regional and pan-European levels in the period up to 2025 and 2030, have two groups of projects in the field of electricity transmission [3].

The first group of projects includes projects of reinforcement of lines that connect transmission system of Republic of Serbia with neighbouring transmission systems and further integration of the transmission system of the Republic of Serbia in regional interconnection. These projects enable the implementation of the following strategic goals in the field of electrical energy:
development of electricity market at national and regional level, increase of transmission
capacity/corridors via Republic of Serbia, which have regional and pan-European significance,
enabling net export of electricity and providing secure supply of electricity for domestic market.

The second group of projects includes projects for further development and reconstruction of the
existing transmission network in order to ensure a secure supply of transmission system users
and placement of produced electric energy. These projects enable the implementation of the
following strategic goals in the field of electrical energy: providing secure supply of electricity
for domestic market and development of electricity market at national and regional level.

The first group of projects includes the project "Trans-Balkan corridor", which implementation is
on-going and it has predominantly regional character. The second group consists of projects of
the reconstruction of existing 110 kV power lines which are at the end of their life cycle, as well
as the construction of new lines which solve the problems of unsecure, a radial supply of
individual substations 110/X kV.

The "Trans-Balkan corridor" project is included in Single Project Pipeline, Projects of Energy
Community Interest (PECI), Projects of Common Interest (PCI) (section Resita - Pančevo),
Western Balkan Investment Framework project list (WBIF) and list of project within investment
framework of Western Balkan Six (WB6) list (section Kragujevac 2 - Kraljevo 3 and upgrade of
Kraljevo 3 substation) and it consists of two phases [3].

The “Trans-Balkan corridor - Phase 1” consists of four sections:

- Construction of double 400 kV overhead line (OHL) TS Pančevo 2 - TS Rešica -
 68.3 km, 27.36 millions € (own funds EMS JSC);
- Construction of single 400 kV OHL TS Kragujevac 2 - TS Kraljevo 3 with increase of
 voltage level in TS Kraljevo 3 at 400 kV - 60 km, 29.6 millions € (eight millions € own
 funds EMS JSC, 6.6 millions € donations from WBIF, 15 millions € credit from KfW);
- Construction of double 400 kV OHL TS Obrenovac - TS Bajina Bašta with increase of
 voltage level in TS Bajina Bašta at 400 kV - 109 km, 58.8 millions € (pre-accession EU
 funds);
- Construction of double interconnection line 2x400 kV Serbia - Bosnia and Herzegovina -
 Montenegro - 84 km, 40.8 millions € (pre-accession EU funds).

Within the project "Trans-Balkan corridor - Phase 1" in 2017, the construction of Section I was
completed (more detailed in chapter 3.3.2 on page 29). By the end of 2021, the completion of the
construction of Section II is planned.

In order to continue with the realization of the project, EMS JSC applied in November 2017 for a
donation of 26.6 millions € for Sections III and IV. EMS JSC determined this amount based on
the feasibility study for the 400 kV interconnection between Serbia, Montenegro and Bosnia and
Herzegovina. In all analyzed scenarios, this study took into account that an undersea cable
between Italy and Montenegro will be built in one phase and in a bipolar arrangement with a
total capacity of 1,200 MW. However, in the meantime, the Montenegrin Government, the
Italian TSO and the Montenegrin TSO have decided that the realization of the submarine cable
project between Italy and Montenegro is carried out in phases (gradual execution of the project),
and in such a way that in the first phase, single cable core will be built and put into operation (the
cable operates in a unipolar mode with a transmission capacity of up to 600 MW). For this
reason, EMS JSC withdrew the grant application and to start to develop a new regional system
study with economic and financial analysis that would take into account newly emerging circumstances.
The continuation and dynamics of the construction of sections III and IV will depend on the results of this study.

The "Trans-Balkan corridor - Phase 2" includes a number of projects for construction of new 400 kV power lines. Only after the completion of the first phase, based on the completed planning and technical documentation, decision will be made on the priorities of projects under Phase 2.

For the project "North CSE corridor", which represents one section of the "Trans-Balkan corridor - Phase 2" project, a revision of the grant proposal for the preparation of a preliminary and feasibility study with the conceptual project and the techno-economic and financial analysis is in progress that there are still no available data on the final technical characteristics and the effects of the construction of the substation and the transmission line.

Regarding project of the reconstruction of existing 110 kV power lines, it must be considered that over 2,000 km of 110 kV OHL of transmission network was built more than 50 years ago. Although in the meantime, some of them were reconstructed, these are the replacement of worn conductors, and very rarely replacement of pillars. A large number of power lines is built on concrete pillars and passes affected routes, which results in a reduction of indicators of supply reliability. To ensure a satisfactory level of reliability of the 110 kV power transmission grid it is necessary to implement phases reconstruction of this network in the future. It is planned to reconstruct annually about 40 kilometres of 110 kV OHL by the end of 2023, that is, a total of 280 kilometres during Program implementation [3].

3.12. Investment and Development Plan of the Distribution System for the next Three to Five Years

Basic function of the planned projects in the field of electricity distribution is to increase the level of reliability of power supply of electricity customers, reduce the losses of electricity and optimize the use of the distribution network [3].

In order to achieve stated strategic goals, projects can be divided into two groups: projects that introduce modern technologies that enable the improvement of operation and the reduction of losses in the distribution system and projects of reconstruction and reinforcement of the distribution network in order to improve the reliability of supply and reduce electricity losses in the distribution network [3].

The first group of projects includes "Improving metering infrastructure" and "Distribution network automation". The second group of projects consists of the "Project of reconstruction of TS 110/X kV at the end of their life cycle" and "Project of construction of new TS 110/X kV". The total investment value of the four projects is around 277 millions €.

The aim of the project "Improvement of metering infrastructure" is the replacement of worn-out metering infrastructure and implementation of modern systems for remote reading and load management, and information systems that allow the use of the data collected. The project is being implemented in phases, through the replacement of electric meters and implementing the system in areas where advance preparation and screening of the existing situation is carried out. Currently, documentation has been prepared and made available for replacing indirect, semi-indirect and direct metering groups in the area of a complete distribution network and the replacement of the meters for a total of about 50,000 households and 25,343 indirect metering group that will be incorporated into the TS X/0.4 kV. Also, the documentation was prepared for the implementation of an information system that will allow remote reading, load management and use of data obtained in this way.
The aims of project "Distribution network automation" are: improving the reliability of supply of customers, shortening the duration of interruptions, the protection of vulnerable customers (public services, hospitals, processing industry, which are sensitive to power failure), increasing the level of manipulation of medium voltage networks, improving the utilization of existing equipment through equalization of annual load diagram by remote control of load, i.e., changing the way of supply through the use of remote control in the medium voltage network. The project will be implemented through the installation of new disconnection elements in the medium-voltage network (reclosers and disconnectors) to be controlled remotely, by installing software for remote control of the existing disconnection equipment, by installing new TS X/0.4 kV with ring main unit switching equipment, by installation of ring main unit switchgear equipment in the existing TS X/0.4 kV, by installation of SCADA systems and their integration into existing dispatch control centres.

The project of reconstruction of TS 110/X kV at the end of their service life aims to increase safety of operation and security of supply and increase the efficiency of the distribution of electricity at 110 kV voltage level. By the end of 2023, the reconstruction of 28 TS 110/X kV is planned to be completed, the reconstruction of three TS 110/X kV (Paračin 3, Ćićevac and Kuršumlija) is planned to be underway and necessary spatial planning and technical documentation for three TS 110/X kV (Ristovac, Pirot 2 and Vlasotince) is planned to be prepared. The reconstruction of other mentioned TS (older than 40 years), which is necessary in order to increase safety of operation and security of supply and increase the efficiency of the distribution of electricity at 110 kV voltage level, will start after 2023.

The goal of the project of construction of new TS 110/X kV is to increase security of supply and increase the efficiency of electricity distribution. The process of constructing new TS 110/X kV that take over the function of an uneconomically loaded middle voltage network, solve the problem of insecure power from the existing TS 110/X kV and TS 35/X kV, high losses and low voltage conditions in the medium voltage network intensified in the previous 5-10 years, and will continue in the next ten years due to the large number of buildings whose construction is necessary. It is planned that the construction of 32 TS 110/X kV will be completed and that the required spatial planning and technical documentation will be prepared by the end of 2023. It is also planned that the licenses for three TS 110/X kV (Boljevac, Leskovac 5 and Stara planina) will be provided by the end of 2023.

3.13. Regional, National and European Goals of Sustainable Development, Including International Projects

Republic of Serbia has adopted, signed and ratified the agreement on the establishment of the Energy Community [23]. Thus, as one of its priorities, it defined the establishment of a regional electricity market and its integration into the EU energy market. Such a market should provide significant investments in this sector and contribute to the economic development and stability of country and region. Market functioning must be regulated by the legal framework and actions of European Union in the field of electricity, as well as environmental protection, competitiveness, use of renewable energy sources and energy efficiency. Construction of new power plants and gas interconnections will position Republic of Serbia as an important country for energy transit. Full implementation of European Union actions in the Republic of Serbia is an obligation defined by the Energy Law [1], Strategy [2] and the Program [3].

All national goals, activities and measures in the energy sector are fully in line with the objectives of Energy Strategy of European Community and European Union strategy, which implies creating a competitive and integrated energy market, attracting investment in the energy sector and ensuring safe and sustainable energy supply. Key elements of sustainable
Development in Republic of Serbian energy market are: energy efficiency, renewable energy sources and environmental protection and reduction of impacts on climate change.

In order to develop regional, national and European goals of sustainable development and integration into energy market of European Union, two groups of projects in the Republic of Serbia can be identified: projects whose realization is planned and certain in the coming midterm period, and projects that potentially can be actual in the period after 2023.

National and regional projects whose realization is in progress or those planned in the medium term [3]:

- Project "Trans-Balkan corridor". Project, which consists of two phases in which is being implemented more subprojects of building new 400 kV power lines (in the 1st stage four sections is carried out) and connecting and switching substations, enables an increase in transmission capacity of the transmission network of Serbia, the replacement of worn-out 220 kV network, easier connection of production and storage capacities of electricity and better integration of the electricity market. One section of the project is already completed (double line 400 kV between Serbia and Romania), one is under construction (line 400 kV TS between Kragujevac 2 - TS Kraljevo 3 with increase of voltage level in TS Kraljevo 3 at 400 kV) and for others it is process of preparation for spatial-planning and technical documentation. The project "Trans-Balkan corridor" is included in Single Project Pipeline, Projects of Energy Community Interest (PECI), Projects of Common Interest (PCI) - section Resita - Pančevo, and on Western Balkan Investment Framework project list (WBIF) and list of project within investment framework of Western Balkan Six (WB6 list) - section Kragujevac 2 - Kraljevo 3 and upgrade of Kraljevo 3 substation. Estimated investment of Phase 1 is about 156.56 millions €.

- The project of construction of new thermo-unit in TPP Kostolac B3 (installed capacity of 350 MW), with expansion of existing mine, according to all EU standards for environmental protection. Power placement of new B3 unit into transmission system of electrical energy will be carried out through the existing 400 kV switching station located in immediate vicinity of new unit. The value of the project TPP Kostolac B3 is 715.6 million $ and completion period is 58 months. The project is financed from two sources: 85% of the project will be funded by a loan from the Chinese Exim bank under preferential conditions approved by the government guarantee, and the residue is provided from the PE EPS (15%).

- Project for the construction of new wind power plants at the territory of the Republic of Serbia up to 500 MW. The project implements more private investors and it is of strategic importance for the Republic of Serbia for achieving the objectives defined for the share of renewable energy in gross final energy consumption of the Republic of Serbia. For most subprojects technical documentation is prepared, or in the final stages, and for all power plants awarded with the temporary status of privileged producers construction permit was issued. Construction of the first wind farms is expected to begin during 2017. Estimated investment of project is about 706 millions €.

- The project of environmental protection in the sector of the electricity production from EPS's power plants. The project includes thirteen subprojects intended for reduction in emissions of harmful gases SO₂ and NOₓ, their reduction in permissible limits, resolving the problem of ash handling, waste storage and treatment of waste water in locations of particular generating capacity in EPS. For some sub-projects planning and technical documentation is prepared, while for some is in the preparation phase. Estimated investment of project is about 535.7 millions €.
Potential national and regional projects whose realization is not certain in the medium term [2]:

- The project of construction of TPPNT B3 installed capacity for 750 MW. Estimated investment of project is about 1.6 billions €.
- The project of construction of TPP Kolubara B installed capacity for 2x375 MW. Estimated investment of project is about 1.5 billions €.
- The project of construction of TPP Novi Koviń installed capacity for 2x350 MW. Estimated investment of project is about 1.33 billions €.
- The project of construction of TPP Štavalj installed capacity for 300 MW. Estimated investment of project is about 700 millions €.
- The project of construction of new thermo-unit in CHP Novi Sad installed capacity for 340 MW. Estimated investment of project is about 400 millions €.
- The project of construction of gas CHP (Belgrade, Novi Sad, Niš, etc.) installed capacity for 860 MW. Estimated investment of project is about 1.5 billions €.
- The project of construction of HPP Velika Morava installed capacity for 147.7 MW. Estimated investment of project is about 360 millions €.
- The project of construction of HPP Ibar installed capacity for 117 MW. Estimated investment of project is about 300 millions €.
- The project of construction of HPP Srednja Drina installed capacity for 321 MW. Estimated investment of project is about 819 millions €.
- The project of construction of PSHPP Bistrica installed capacity for 4x170 MW. New HPP will be part of the system of Lim HPPs. Estimated investment of project is about 560 millions €.
- The project of construction of PSHPP Đerdap 3 installed capacity for 2x300 MW. Estimated investment of project is about 400 millions €.
- The project of construction small hidro power plants at 191 locations with total installed capacity of 387 MW. Estimated investment of project is about 500 millions €.
4. NATURAL GAS

Energy Law [1] stipulates conditions whereby entities can perform energy-related activities. An energy-related activity can be performed by a public enterprise, business entity or other legal entity or entrepreneur having a license for performing the energy-related activity, unless otherwise prescribed by the Law.

Energy regulated activities are: natural gas transmission and natural gas transmission system management, natural gas storage and natural gas storage facility management, natural gas distribution and natural gas distribution system management and public supply of natural gas. Energy-related activities of natural gas supply are performed in accordance to the open market principles.

AERS is the competent body that regulates the price of natural gas for public supply, determines the price of access to the natural gas transmission and distribution system, and determines the price of access to the natural gas storage. Energy entities that perform regulated energy activities calculate regulated prices and adopt the act on prices and submit them to the AERS for approval.

The Law on Public Enterprises regulates activities of public interest in several business activities one of which is energy-related activity. The Energy Law [1] regulates activities of public interest in energy sector, as well as obligations of the public supply.

The Energy Law [1] defines energy activities of general interest in the field of natural gas, such as: transmission and natural gas transmission system management, natural gas storage and natural gas storage facility management, natural gas distribution and natural gas distribution system management, and public supply of natural gas.

The Republic of Serbia is a signatory to the Treaty establishing the Energy Community, on the basis of which it pledged to apply the Acquis Communautaire in the field of natural gas. With the adoption of the Energy Law in December 2014 [1] the third energy package of directives from the field of natural gas was transposed into the legislation of the Republic of Serbia.

The Energy Law stipulates that as of January 1, 2015 all end-consumers of natural gas have the right to freely choose a supplier on the market.

In order to ensure security of supply of end consumers it is stipulated that households and small customers whose all facilities/objects are connected to the natural gas distribution system, if they do not choose another supplier, are entitled to public supply at regulated prices. Small consumers of natural gas are the final customers whose annual consumption of natural gas are less than 100,000 m³ and whose facilities/objects are all connected to the natural gas distribution system.

In addition to PE Srbijagas another 32 energy entities have a license to perform activities of public service.

The right to last resort supply of maximum duration of 60 consecutive days, has the end consumer of natural gas, which is not eligible for public supply in the case of bankruptcy or liquidation of the supplier, previously supplied above mentioned consumer; after the termination or revocation of the license of the supplier who had previously supplied customer; it has not found a new supplier after the termination of the supply contract with the previous supplier, unless the contract termination is the consequence of the non-payment obligation of the buyer.
The government according to the public tender procedure assigned public company PE Srbijagas for supplier who will perform the last resort supply.

According to the public tender the government assigned PE Srbijagas as a supplier for public suppliers of natural gas. The Energy Law [1] stipulates that until the establishment of a competitive natural gas market in the Republic of Serbia the government, according to the public tender procedure, determines the supplier which will supply natural gas public suppliers, at their request, under the same conditions and at the same prices.

4.1. Natural Gas Market

In the natural gas sector, there is bilateral market functioning. Natural gas market participants include: producers (NIS JSC), suppliers (66 companies), public suppliers (33 companies), final customers (269,010 using regulated supply and 961 in the open market), transmission system operators PE Srbijagas and "Yugorogaz-Transport d.o.o. Niš" (Yugorogaz-Transport), distribution system operators (33 active companies) and storage operator UGS Banatski Dvor. PE Srbijagas has made a decision about the legal and functional unbundling of transmission system operator "Transportgas Srbija d.o.o. Novi Sad" (Transportgas Srbija) from the parent company. The Transmission Network Code [33]-[36] regulates the method in line with which the transmission system operator administers transactions in the natural gas market and regulates more closely the rights and obligations of market participants who use the natural gas transmission system.

Only three companies PE Srbijagas, NIS JSC and Cestor Veks JSC dealt with wholesale in 2017. In this market, natural gas is purchased and sold directly among market participants based on sales contracts. During 2017, trade was functioned mutually between suppliers, and between suppliers and natural gas producer.

The Energy Law [1] prescribes that the Government appoints the supplier of public suppliers until a competitive market is established. According to the Energy Law the supplier of public suppliers has to offer natural gas to all public suppliers (including the one within the same legal entity as the supplier itself) under the same conditions and at the same price. In previous period, PE Srbijagas was the supplier of public suppliers [11].

For the trading in the retail market, and for the supply of final consumers with natural gas in the Republic of Serbia, 66 companies is licensed for operation in the open market (during 2017, 30 actually performed this activity), and there are 33 public suppliers (they are in the same time district system operators). During 2017, the largest share of natural gas quantities was sold in the open market (85.4%). The last resort supply was used by 18 customers in the same period, and their share was 0.5%. The share of households and small customers (with annual natural gas consumption of up to 100,000 m³ with all their facilities connected to the natural gas distribution system) was 14% out of the total gas quantities procured in the retail market [11]. Analysis of the trend of natural gas selling structure in the retail market, after market liberalization in 2015 (Table 15), shows that the ratio between selling in the open market and in the regulated market is roughly constant (85%:15%).

Supplier switching in 2017 was realized within some distribution system only. Suppliers were switched on 85 metering points, where 21 million m³ were delivered. It amounts to 0.9% of natural gas quantities delivered in the retail market [11]. Rules on Supplier Switching were adopted in 2015 and since then valid data about supplier switching exist (Table 15). Data for a three-year period show that the quantity of natural gas supplied by switched suppliers decreases, but the number of consumers that switch suppliers increases.
Table 15: Natural gas sale in period from 2012 to 2017, in million m3 [11]

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m3</td>
<td>324</td>
<td>649</td>
<td>804</td>
<td>1,514</td>
<td>1,712</td>
<td>1,917</td>
</tr>
<tr>
<td>%</td>
<td>16.2%</td>
<td>34.3%</td>
<td>40.6%</td>
<td>85.3%</td>
<td>85.6%</td>
<td>85.4%</td>
</tr>
<tr>
<td>Regulated market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m3</td>
<td>1,680</td>
<td>1,243</td>
<td>1,178</td>
<td>261</td>
<td>289</td>
<td>329</td>
</tr>
<tr>
<td>%</td>
<td>83.8%</td>
<td>65.7%</td>
<td>59.4%</td>
<td>14.7%</td>
<td>14.4%</td>
<td>14.6%</td>
</tr>
<tr>
<td>Supplier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>switching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>99</td>
<td>74</td>
<td>21</td>
</tr>
<tr>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.5%</td>
<td>3.7%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Metering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>22</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Natural gas in the Serbian market origins from indigenous production and from import. Most of natural gas quantities are provided through import from the Russian Federation based on the long-term contract, and, if necessary, from other sources under short-term contracts.

Long-term contract between "Gazprom Export d.o.o." (Gazprom Export) and "Yugorosgaz a.d. Belgrade" (Yugorosgaz JSC) for natural gas supply from Russian Federation to Serbia was signed in March 2013. This contract is valid until December 2021.

In accordance to this contract, Yugorosgaz JSC performs supply of natural gas from Russian Federation to the Republic of Serbia on the parity of overtaking station Beregovo and on the parity of underground storage "Banatski Dvor". Contract initially guaranteed minimal annual supply of 1.5 billion of Sm3 of natural gas. This quantity was valid until December 2017. From January 1, 2018, the guaranteed quantity of natural gas under the current contract is increased to 2 billion Sm3 of natural gas per year.

The contract defines the method of forming the prices of delivered natural gas (based to "oil formula") and the supply regime. The supply regime defines the maximal available daily quantity of natural gas (with the possibility of using more without paying penalties) and minimal daily natural gas quantities that must be taken (with penalties in the case of non-fulfillment).

4.2. Transport System

A natural gas transmission system is a network for natural gas transmission comprising a network of pipelines with design pressure exceeding 16 bar, except for supply gas pipelines, as well as compressor stations, block stations, metering and regulating stations, and metering stations at all points of delivery from the transmission system, other energy entities, electronic communications and information system and other infrastructure necessary for natural gas transmission, including line-pack (hereinafter: the natural gas transmission system).

During 2017, the transmission network length was extended for 36 km, or 1.4% (Table 16). PE Srbijagas is the transmission system operator over 95% of transmission system network, while Yugorosgaz-Transport is the transmission system operator over the remaining 5%.

Table 16: Overview of the length of the transmission system network in Serbia in period 2013 – 2017 (km) [11]

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of network (km)</td>
<td>2,398</td>
<td>2,423</td>
<td>2,423</td>
<td>2,423</td>
<td>2,459</td>
</tr>
</tbody>
</table>
Basic technical characteristics of the transmission systems of PE Srbijagas and Yugorosgaz-Transport are given in Table 17.

Table 17: Basic technical characteristics of transmission systems of PE Srbijagas and Yugorosgaz-Transport [11]

<table>
<thead>
<tr>
<th>Technical characteristics of the transmission system</th>
<th>PE Srbijagas</th>
<th>Yugorosgaz-Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (mil. m³/day)</td>
<td>≈ 18</td>
<td>≈ 2,2</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>16–75</td>
<td>16–55</td>
</tr>
<tr>
<td>Length (km)</td>
<td>2,334</td>
<td>125</td>
</tr>
<tr>
<td>Nominal diameter (mm)</td>
<td>DN 150–DN 750</td>
<td>DN 168–DN 530</td>
</tr>
<tr>
<td>Compressor Stations</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Compressor station, power, (MW)</td>
<td>4.4</td>
<td>-</td>
</tr>
<tr>
<td>Number of entries into the transmission system :</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>1. From another transmission system</td>
<td>1 (Horgoš)</td>
<td>1</td>
</tr>
<tr>
<td>2. From production fields – domestic gas</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>3. From the storage</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Number of exits from the transmission system</td>
<td>243</td>
<td>5</td>
</tr>
<tr>
<td>Metering and regulating stations on transmission system exit</td>
<td>240</td>
<td>5</td>
</tr>
<tr>
<td>Overtaking stations</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Entry into Yugorosgaz transmission system</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Interconnector towards Bosnia and Herzegovina</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Natural gas storage</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Transmission system operators were obliged to provide automatic collection and processing of the data on natural gas flows with collecting interval of 24 hours or shorter for all delivery points from the transmission system. Such metering and data acquisition equipment is necessary for market functioning and development. So far, it has been installed in all exits on the system that is operated by Yugorosgaz-Transport and on 61% of the total number of exits from PE Srbijagas transmission system [11].

The main disadvantage and weakness of the transmission system is one connection with the neighboring systems that enables and provides import of necessary quantities of natural gas. The connection (overtaking station) is located in Kishkumdorozmi (Republic of Hungary), and the gas is imported via the Hungarian transmission system from the Russian Federation under a long-term contract with Gazprom Export.
The Republic of Serbia has two interconnections with gas pipeline systems of neighboring countries (one entry and exit point):

- Hungary - Serbia (Kishkundorozhma) - entry point and
- Republic of Serbia – Bosnia and Herzegovina (Zvornik) - exit point

Both interconnections are a part of Transportgas Srbija transmission system, while there is no gas pipelines connected with the transmission systems of neighboring countries within the Yugorosgaz-Transport transmission system.

4.2.1. Assessment of Transport System Reliability

The assessment of the reliability of transmission system operation is doing based on indicators of the quality of natural gas delivery and supply. Energy entities collect data on these indicators in a systematically and uniformly in accordance to the Rules on Monitoring Technical and Commercial Indicators and on Regulating Quality of Electricity and Natural Gas Delivery and Supply [38], and inform the AERS on this issue once a year.

Reliability of transmission system operation is monitored by recording number and duration of interruptions in the delivery within transmission. Interruptions are sorted out to planned, unplanned and interruptions caused by force majeure.

Interruption within the transmission system of PE Srbijagas from 2015 to 2017 are presented in Table 18. In the same period, on the transmission system of Yugorosgaz-Transport, there were no natural gas delivery interruptions.

Table 18: Interruptions within PE Srbijagas transmission system by causes [11]

<table>
<thead>
<tr>
<th>TSO PE Srbijagas</th>
<th>Planned interruptions</th>
<th>Unplanned interruptions</th>
<th>Vis major</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Duration (min)</td>
<td>Number</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2016</td>
<td>7</td>
<td>2,649</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>15</td>
<td>10,980</td>
<td>2</td>
</tr>
</tbody>
</table>

Out of 195 hours of interruptions during 2017, the highest share (93.8%) was related to planned interruptions, while the smaller share (6.2%) was related to unplanned interruptions. As interruption causes, unplanned pipes replacement in the cases of observed leaks and other maintenance activities of system operator, as well as administrative reasons, are stated.

4.3. Distribution System

A natural gas distribution system is a distribution network of natural gas comprising a network of pipelines, regulation, metering and regulation, and metering stations at all points of delivery from the distribution system, other energy facilities, electronic communications, information another infrastructure necessary for distribution of natural gas with maximum operating pressure not higher than 16 bar, including line-pack.

According to the Energy Law [1], a distribution of natural gas is a regulated activity.

The length of the distribution network in Serbia has increased from 2012 to 2017 for 8.5%, i.e. to 16,961 km (without connections) thus creating the preconditions for connection of new customers [11]. In comparison to the previous year, the network was extended for 308 km.
The greatest share of increase in distribution network length in 2017 was within PE Srbijagas which is in charge for 48.9% of the total distribution network in the Republic of Serbia [11].

The length of the distribution network is presented in Table 19.

Table 19: Length of the distribution network in Serbia in 2012 – 2017 [11]

<table>
<thead>
<tr>
<th>Year</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (km)</td>
<td>15,348</td>
<td>15,839</td>
<td>16,363</td>
<td>16,532</td>
<td>16,653</td>
<td>16,961</td>
</tr>
</tbody>
</table>

The number of active connections (delivery points) within distribution networks amounts 267,000, and in comparison to the previous year, it has been increased for approximately 4,600 connections (1.75%) [11].

4.3.1. **Assessment of Distribution System Reliability**

The assessment of the reliability of distribution system operation can be done based on indicators of the quality of natural gas delivery and supply. Energy entities collect data on these indicators in a systematic and the uniform manner in accordance with the Rules on Monitoring Technical and Commercial Indicators and on Regulating Quality of Electricity and Natural Gas Delivery and Supply [38], and inform the AERS on this issue once a year. Based on the AERS Annual Report for 2017 [11], it is evident that this system of data collection is not fully operating. This means that some energy entities do not collect data and do not provide requested data to the AERS.

Reliability of distribution system operation is assessed by parameters of system reliability - number and duration of interruptions of delivery within distribution. These parameters are monitored and registered separately as planned and unplanned interruptions in natural gas delivery. Based on these parameters, indicators of continuity of delivery from distribution systems are calculated as follows [38]:

- **SAIFI** [number of interruptions/user] - average frequency of interruptions per user; It is calculated as a quotient of the cumulative number of interruptions and total number of users.
- **SAIDI** [min/user] - average duration of interruptions in minutes per user; It is calculated as a quotient of cumulative duration of interruption and total number of users.

Summary data about reliability parameters of distribution system operation and indicators of continuity of delivery for the period 2015-2017 are presented in Table 20 and Table 21. Data are related to planned and unplanned interruptions and are sorted out in accordance to interruption causes. Maximal values of registered SAIFI and SAIDI indicators are also presented.
Table 20: Unplanned interruptions within distribution systems - Summary indicators [11]

<table>
<thead>
<tr>
<th>Interruption cause</th>
<th>Year</th>
<th>Number of interruptions</th>
<th>SAIFI</th>
<th>Maximum reached SAIFI</th>
<th>SAIDI</th>
<th>Maximum reached SAIDI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>number of interruptions/user</td>
<td>min/user</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery reduction from upstream system</td>
<td>2015</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>6</td>
<td>0</td>
<td>0.12</td>
<td>0.10</td>
<td>34.14</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gas leak</td>
<td>2015</td>
<td>58</td>
<td>0.02</td>
<td>0.11</td>
<td>1.70</td>
<td>10.15</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>84</td>
<td>0.04</td>
<td>2.00</td>
<td>6.3</td>
<td>15.85</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>37</td>
<td>0.02</td>
<td>0.13</td>
<td>3.33</td>
<td>23.71</td>
</tr>
<tr>
<td>Third party</td>
<td>2015</td>
<td>219</td>
<td>0</td>
<td>0.15</td>
<td>0.09</td>
<td>75.88</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>183</td>
<td>0.02</td>
<td>0.54</td>
<td>3.86</td>
<td>710.00</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>259</td>
<td>0.03</td>
<td>0.04</td>
<td>3.80</td>
<td>16.44</td>
</tr>
<tr>
<td>Inadequate network capacity</td>
<td>2015</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other reasons</td>
<td>2015</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>3</td>
<td>0.01</td>
<td>0.3</td>
<td>3.79</td>
<td>168.14</td>
</tr>
<tr>
<td>Total</td>
<td>2015</td>
<td>277</td>
<td>0.02</td>
<td>0.15</td>
<td>1.79</td>
<td>75.88</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>273</td>
<td>0.06</td>
<td>2.00</td>
<td>10.26</td>
<td>710.00</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>299</td>
<td>0.06</td>
<td>0.3</td>
<td>10.92</td>
<td>168.14</td>
</tr>
<tr>
<td>Lithuania</td>
<td>2013</td>
<td>-</td>
<td>0.0045</td>
<td>-</td>
<td>1.53</td>
<td>-</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2013</td>
<td>-</td>
<td>0.0067</td>
<td>-</td>
<td>1.01</td>
<td>-</td>
</tr>
</tbody>
</table>
To have a full understanding about the reliability of distribution systems operation in the Republic of Serbia, data about SAIFI and SAIDI indicators for two EU countries (Lithuania and the Netherlands), with the same method for indicators calculation applied, are also presented in Table 20 and Table 21 [26]. It can be noticed, for unplanned interruptions, that both indicators are significantly lower than in the case of Republic of Serbia. This means that there are significant possibilities for improvement of system operation, and that is necessary to undertake technical and organizational measures for reducing unplanned interruptions within distribution systems. Considering “Gas leak” and “Third party” as dominant causes for unplanned interruption, it is clear that the key activities that should be undertaken are related to better maintenance of systems and better coordination with utility companies. Considering planned interruptions, difference is not so significant, but it shows that it is possible to reduce duration of planned interruptions. Maximal SAIFI and SAIDI indicators are significantly higher than average values. This shows significant variation in reliability of operation of different distribution systems, and the need for some distribution systems to take adequate actions to eliminate primarily the cause of unplanned interruptions.

In Table 22, summary data about reliability indicators of distribution system operation for 2015-2017 period are presented.
It can be observed, from Table 22, that the number of interruptions grew during the observed period from 331 interruptions during 2015 to 403 interruptions in 2017. However, the interruption structure is more favorable - the share of unplanned interruptions in 2015 was 84%, while in 2017 decreased to 74%.

Values of continuity indicators of distribution systems (SAIFI and SAIDI) in 2015 are significantly better than in 2016 and 2017. However, taking into consideration that the collecting data started in 2015, objectively it can be assumed that the better results in 2015 were the consequence of inexperience in data collecting and processing, and were not the consequence of significant, additional problems in distribution systems operation in 2016 and 2017. Positive signal is the twice lower value of SAIDI indicator in 2017, compared to 2016. Although numbers of interruptions per user are similar (values of SAIFI indicators), average duration of interruptions was twice longer.

4.4. Storage of Natural Gas

Underground gas storage (UGS) Banatski Dvor was commissioned in November 2011, and it is located on the depleted gas deposit whose capacity was amount to 3.3 billion m3 of natural gas. Total area of the storage amounts to around 54 km2. The available capacity of the underground storage is currently 450 million m3 of natural gas.

The underground gas storage has 30 wells, different by purposes, equipment and period of drilling. Out of total number, 18 wells are used for natural gas injection and withdrawal; one is used for injection of reservoir water, while 11 are observation and monitoring wells. The gas injection/withdrawal line is equipped with an installation for gas processing (separators, filters), measuring and safety equipment, and equipment for gas dehydration and regeneration of glycol.

Compressor station comprises of two compressor installations (gas motor, compressor, cooler). Compressors have two stages of compression; inlet pressure is 30-35 bar and outlet pressure is 150 bar. One compressor has the power of 2.5 MW and it has been in operation since 2006, while the other compressor has the power of 3.5 MW and it has been in operation since 2010.

Maximal daily withdrawal capacity is 5 million m3/day and it is limited by the capacity of the line for gas dehydration. Maximal technical injection capacity is 2.7 million m3/day, and it is
defined by the capacity of parallel operation of both compressors. There is no backup compressor in the case of malfunction of any of compressors.

History of underground storage operation in period 2012-2017 is given in Table 23.

Table 23: Data about UGS Banatski Dvor operation in period 2012-2017 (million m³) [11]

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injected</td>
<td>389</td>
<td>342</td>
<td>284</td>
<td>228</td>
<td>197</td>
<td>240</td>
</tr>
<tr>
<td>Withdrawn</td>
<td>161</td>
<td>268</td>
<td>353</td>
<td>113</td>
<td>254</td>
<td>227</td>
</tr>
<tr>
<td>Own consumption</td>
<td>-</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Delivered to transmission system</td>
<td>-</td>
<td>266</td>
<td>352</td>
<td>113</td>
<td>254</td>
<td>227</td>
</tr>
<tr>
<td>Cushion gas (at the end of year)</td>
<td>353</td>
<td>530</td>
<td>530</td>
<td>530</td>
<td>530</td>
<td>530</td>
</tr>
<tr>
<td>Commercial gas (at the end of year)</td>
<td>328</td>
<td>402</td>
<td>333</td>
<td>448</td>
<td>391</td>
<td>404</td>
</tr>
<tr>
<td>Maximal daily injection</td>
<td>2.48</td>
<td>2.5</td>
<td>2.7</td>
<td>2.4</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Maximal daily withdrawal</td>
<td>3.94</td>
<td>4.2</td>
<td>4.2</td>
<td>2.8</td>
<td>4.95</td>
<td>5.18</td>
</tr>
</tbody>
</table>

Bidirectional gas pipeline Gospodinci – Banatski Dvor enables unhindered and full connection of the underground gas storage with the transmission system of PE Srbijagas. The basic data on this gas pipeline are as follows:

- length 42.5 km
- nominal diameter DN 500
- maximum working pressure: $p_{\text{max}}=75$ bar
- maximum gas flow:
 - withdrawal from UGS Banatski Dvor $Q=415,000$ m³/h (10 million Sm³/day) and
 - injection into UGS B.Dvor $Q=230,000$ m³/h (5.5 million Sm³/day).

Currently, Republic of Serbia should have enough natural gas for 30 days of supply interruption, while there would be a 13.7% shortfall of imported gas in order to meet needs for 90 days [27]. Of course, these results are relative, as the daily (as well as hourly) withdrawal capacity is limited, and consumption over that limit could not be satisfied (regardless to available gas in storage). Also, these results are only valid for a single season. Without additional supply routes, Serbia would not be able to fill underground storage, which would reflect on the next year’s gas supply.

4.5. Security of Supply

4.5.1. Planned Production and Consumption of Natural Gas and a Way for Ensuring Gas Supply for the Upcoming Five Years Period

Natural gas is the third most used primary energy source in the Republic of Serbia, after coal and oil. Its share in the total primary energy supply in 2017, was 14.9% [25]. Gross inland consumption in 2017 amounted 2,658.9 million m³, which was 11.94% higher comparing to

8Technical capacity of underground storage is defined at a temperature of 20°C and a pressure of 1.01325 bar, while values of maximal injected and withdrawn quantities are defined at a temperature of 15°C and a pressure of 1.01325 bar, reduced to lower calorific value of $H_{L}=33,338.35$ kJ/m³.
Growth of consumption is noticeable for the period after 2014 (Figure 2 and Table 24), especially in final energy consumption (industry, households, public and commercial sector) as well as for non-energy purposes.

Figure 2: Supply and consumption structure of natural gas in 2017, in million Sm³ [25]
Natural gas production of in the Republic of Serbia is being realized in Vojvodina area. NIS JSC is the only company in Serbia dealing with the exploration and production of natural gas. Natural gas is extracted from 78 wells, while the main gas fields are as follows: Međa, Martonoš, Itebej, Torda Plitko, Miloševo. After preparation process which makes produced gas applicable to final customers, produced gas is delivered to 11 points into the transmission system (98% of produced quantity) while 2% of produced gas is delivered to 4 points into the distribution system. Inland production was enough to meet 18.4% of gas demand in 2017, while the rest was secured by import from the Russian Federation in line with the long-term contract. There were no imports from other sources or in line with other contracts. For consumers in the Republic of

Table 24: Balance of Natural Gas for the period 2010-2016., in thousands Sm³ [15]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary production</td>
<td>387,183</td>
<td>508,161</td>
<td>533,511</td>
<td>531,188</td>
<td>557,179</td>
<td>572,502</td>
<td>523,229</td>
<td>489,085</td>
</tr>
<tr>
<td>Import</td>
<td>1,967,753</td>
<td>1,747,520</td>
<td>1,789,756</td>
<td>1,887,480</td>
<td>1,394,659</td>
<td>1,740,221</td>
<td>1,795,226</td>
<td>2,182,632</td>
</tr>
<tr>
<td>Stock changes</td>
<td>0</td>
<td>133,729</td>
<td>-216,108</td>
<td>-74,500</td>
<td>68,795</td>
<td>-114,511</td>
<td>56,850</td>
<td>-12,800</td>
</tr>
<tr>
<td>International bunkers</td>
<td>-27,343</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gross inland consumption</td>
<td>2,327,593</td>
<td>2,389,410</td>
<td>2,107,159</td>
<td>2,344,168</td>
<td>2,020,633</td>
<td>2,198,212</td>
<td>2,375,305</td>
<td>2,658,917</td>
</tr>
<tr>
<td>Transformation input</td>
<td>805,480</td>
<td>904,808</td>
<td>826,160</td>
<td>774,997</td>
<td>856,098</td>
<td>885,174</td>
<td>886,884</td>
<td>920,464</td>
</tr>
<tr>
<td>CHP</td>
<td>95,173</td>
<td>153,786</td>
<td>146,795</td>
<td>70,436</td>
<td>20,064</td>
<td>46,582</td>
<td>94,992</td>
<td></td>
</tr>
<tr>
<td>Autoproducers</td>
<td>203,910</td>
<td>184,245</td>
<td>132,134</td>
<td>205,803</td>
<td>216,384</td>
<td>164,998</td>
<td>144,646</td>
<td>136,587</td>
</tr>
<tr>
<td>District heating plants</td>
<td>506,397</td>
<td>566,777</td>
<td>547,231</td>
<td>498,758</td>
<td>480,844</td>
<td>563,451</td>
<td>566,640</td>
<td>565,657</td>
</tr>
<tr>
<td>Refineries</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>131,479</td>
<td>136,661</td>
<td>129,016</td>
<td>123,228</td>
<td></td>
</tr>
<tr>
<td>Consumption in the energy sector</td>
<td>60,274</td>
<td>54,242</td>
<td>93,736</td>
<td>159,932</td>
<td>183,560</td>
<td>209,707</td>
<td>180,986</td>
<td>202,241</td>
</tr>
<tr>
<td>Loses</td>
<td>20,943</td>
<td>5,746</td>
<td>11,847</td>
<td>16,328</td>
<td>18,194</td>
<td>11,433</td>
<td>22,544</td>
<td>36,101</td>
</tr>
<tr>
<td>Final consumption</td>
<td>1,440,896</td>
<td>1,424,614</td>
<td>1,175,405</td>
<td>1,392,911</td>
<td>962,981</td>
<td>1,091,898</td>
<td>1,284,891</td>
<td>1,500,111</td>
</tr>
<tr>
<td>Final Non-Energy consumption</td>
<td>271,435</td>
<td>283,532</td>
<td>21,496</td>
<td>13,436</td>
<td>114,252</td>
<td>157,658</td>
<td>292,077</td>
<td>425,526</td>
</tr>
<tr>
<td>Final Energy consumption</td>
<td>1,169,461</td>
<td>1,141,082</td>
<td>1,153,909</td>
<td>1,258,546</td>
<td>848,729</td>
<td>934,240</td>
<td>992,814</td>
<td>1,074,585</td>
</tr>
<tr>
<td>Industry</td>
<td>759,313</td>
<td>732,730</td>
<td>760,460</td>
<td>88,9452</td>
<td>485,888</td>
<td>543,083</td>
<td>550,089</td>
<td>578,938</td>
</tr>
<tr>
<td>Transport</td>
<td>12,623</td>
<td>14,054</td>
<td>4,459</td>
<td>9,486</td>
<td>8,833</td>
<td>11,204</td>
<td>6,502</td>
<td>5,309</td>
</tr>
<tr>
<td>Households</td>
<td>270,412</td>
<td>266,653</td>
<td>244,232</td>
<td>218,528</td>
<td>179,000</td>
<td>189,822</td>
<td>210,678</td>
<td>240,938</td>
</tr>
<tr>
<td>Agriculture</td>
<td>18,330</td>
<td>17,448</td>
<td>20,670</td>
<td>19,543</td>
<td>32,207</td>
<td>20,713</td>
<td>28,953</td>
<td>22,564</td>
</tr>
<tr>
<td>Public and commercial sector</td>
<td>108,783</td>
<td>110,197</td>
<td>124,088</td>
<td>121,537</td>
<td>142,801</td>
<td>169,418</td>
<td>196,592</td>
<td>226,836</td>
</tr>
</tbody>
</table>

Natural gas production of in the Republic of Serbia is being realized in Vojvodina area. NIS JSC is the only company in Serbia dealing with the exploration and production of natural gas. Natural gas is extracted from 78 wells, while the main gas fields are as follows: Međa, Martonoš, Itebej, Torda Plitko, Miloševo. After preparation process which makes produced gas applicable to final customers, produced gas is delivered to 11 points into the transmission system (98% of produced quantity) while 2% of produced gas is delivered to 4 points into the distribution system.

Inland production was enough to meet 18.4% of gas demand in 2017, while the rest was secured by import from the Russian Federation in line with the long-term contract. There were no imports from other sources or in line with other contracts. For consumers in the Republic of

https://www.nis.eu/lat/o-nama/delatnosti/istrazivanje-proizvodnja
Serbia, natural gas from Gazprom Moscow is acquired by Yugorosgaz JSC. In 2017, a total of 2,658.9 million m³ was imported from the Russian Federation in line with the long-term contract [25], while all imported quantity was withdrawn from the Hungarian transport system.

Total indigenous production of natural gas in 2017 amounted 489 million m³, which was 6.9% less than in 2016 [25]. After the period 2011 to 2015, when gas production has significant growth, production has been constantly decreased.

In the upcoming period continuation of declining trend of production is expected, since gas fields are characterized by high utilization coefficients, amounts of conventional resources and balance reserves are small, while a level of geological exploration is relatively high [2]. Projections of indigenous production up to 2023 are given in Table 25.

Table 25: Projection of indigenous production, in thousands m³ [3]

<table>
<thead>
<tr>
<th>Year</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>469,781</td>
<td>425,924</td>
<td>397,369</td>
<td>364,912</td>
<td>343,522</td>
<td>322,353</td>
</tr>
</tbody>
</table>

In the Energy Sector Development Strategy [2] two scenarios of natural gas consumption were considered: reference scenario and scenario with implementation of energy efficiency measures. Both scenarios foresee an increase of gas consumption, both for transformation input (CHP gas facilities, increase of gas share in district heating plants and autoproducers) and for final consumption (Table 26). Besides the expected increase of total gas consumption, the Strategy also envisages an increase of the share of natural gas in primary energy mix to 16% by 2030.

Table 26: Projections of natural gas consumption, in thousand Sm³ [2]

<table>
<thead>
<tr>
<th></th>
<th>Reference scenario</th>
<th>Transformation input</th>
<th>Final consumption</th>
<th>Losses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020</td>
<td>2025</td>
<td>2030</td>
<td>2020</td>
<td>2025</td>
</tr>
<tr>
<td>Transformation input</td>
<td>916,771</td>
<td>1,027,286</td>
<td>1,113,940</td>
<td>777,372</td>
<td>907,980</td>
</tr>
<tr>
<td>Final consumption</td>
<td>1,935,266</td>
<td>2,255,508</td>
<td>2,622,217</td>
<td>1,780,797</td>
<td>2,073,410</td>
</tr>
<tr>
<td>Losses</td>
<td>38,931</td>
<td>46,466</td>
<td>54,002</td>
<td>36,420</td>
<td>42,699</td>
</tr>
<tr>
<td>Total</td>
<td>2,890,969</td>
<td>3,329,261</td>
<td>3,790,158</td>
<td>2,594,588</td>
<td>3,024,089</td>
</tr>
</tbody>
</table>

Following the projections of gas consumption presented in the Strategy [2], PE Srbijagas has determined the total yearly quantities of natural gas to be transported by the transmission system for the period from 2017 to 2026 [28]. The assessment of needed quantities was performed as the base for the Plan of the transmission system development for the period 2017-2026 [28]. Table 27 presents data for planed transmission in the next five years, i.e. up to 2023. Estimates of quantities for the DSO needs and for the needs of the final consumers connected to the transmission system were done based on historical data for the period 2011 – 2015, results of a survey conducted with DSO and end consumers connected to the transmission system, as well as the Strategy projections [2]. Data given in Table 27 are corrected, compared to data presented in [28], for UGS Banatski Dvor and overtaking station Pojate. Corrections were made based on the extension of milestones for UGS Banatski Dvor given in the Program [3] and based on the proposed projections of gas transmission by the Transmission Development Plan of Yugorosgaz-Transport [29].
Table 27: Estimation of natural gas quantities to be transmissed in the period 2019-2023, in million Sm3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overtaking station Pojate</td>
<td>46.7</td>
<td>49</td>
<td>51.5</td>
<td>53.9</td>
<td>54.9</td>
</tr>
<tr>
<td>(according to Yugorosgaz-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributers</td>
<td>1,267</td>
<td>1,271</td>
<td>1,275</td>
<td>1,279</td>
<td>1,283</td>
</tr>
<tr>
<td>CHP</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>End consumers connected to the</td>
<td>466</td>
<td>468</td>
<td>471</td>
<td>473</td>
<td>475</td>
</tr>
<tr>
<td>transport system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGS Banatski Dvor</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Production on the transmission</td>
<td>311</td>
<td>269</td>
<td>247</td>
<td>223</td>
<td>203</td>
</tr>
<tr>
<td>system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Own use</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>**Transmission without cross</td>
<td>2,782.93</td>
<td>2,749.77</td>
<td>2,737.23</td>
<td>2,721.69</td>
<td>2,709.06</td>
</tr>
<tr>
<td>border transmission**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overtaking station for cross</td>
<td>226</td>
<td>327</td>
<td>378</td>
<td>379</td>
<td>380</td>
</tr>
<tr>
<td>border transmission (for Bosnia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Herzegovina)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total transmission including</td>
<td>3,004.33</td>
<td>3,070.27</td>
<td>3,106.63</td>
<td>3,090.09</td>
<td>3,077.86</td>
</tr>
<tr>
<td>cross border transmission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the upcoming period consumption of natural gas will be governed by various factors related to energy sector (price of natural gas, infrastructure development, prices of other energy sources, etc.), factors related to general economic and social development (GDP growth, purchasing power of the population, implementation of environmental regulations, demographic indicators, structure of industrial production, etc.). Significant effect on natural gas consumption could have changes related to large industrial facilities, significant natural gas consumers (e.g., Azotara Pančevo, MSK Kikinda), as well as realization of projects in the energy sector (Heat supply of Belgrade from TPP “Nikola Tesla A”, construction of thermal power plants fueled by natural gas). However, if there is no significant change in the structure of natural gas consumption, considering projected decline in domestic natural gas production, further increase of import dependence can be expected - from 82.1% in 2017 to around 90% by 2025.

The long-term contract between Gazprom export and Yugorosgaz JSC, on the supply of the Republic Serbia with natural gas from Russia, valid by the end of 2021, guarantees supply of 2 billion Sm3 of natural gas per year. It is rational to assume that additional needs of natural gas in the period up to 2023 could be met by import from the Russian Federation. Alternative and probably more expensive options are supply from the North Stream, leasing transmission capacities in Germany, Austria and Hungary, or purchasing in the market in Hungary. After completing of the interconnection with Bulgaria and Bulgarian connection with a gas hub in Turkey, the possibility of supplying from this direction could be analyzed also. The available capacity of interconnectors with Hungary for the needs of consumers in Serbia (11 million m3/day, utilization rate of interconnectors of 90%) allows annual imports of about 3.6 billion m3, which is significantly more than 2.182 billion m3 imported in 2017, or 1.88 billion m3 of average annual imports in the period 2008-2017 [11], but also more than the projected annual gas needs until 2023.
4.5.2. **Measures to Cover Peak Demand or Shortfalls of Suppliers**

Transmission network codes [33]-[36] regulate actions regarding allocation of capacity and overload management, as well as managing actions in cases of disturbances in the transmission system.

In the case of the peak load demand when a sum of the required entry/exit capacities is greater than the total capacity, the transmission system operator determines to each applicant the capacity proportionally to the required capacity. Also, the operator of the transmission system has the right to limit or cut off interruptible capacity at entry/exit, if announced natural gas quantities for the next day are greater than the technical capacity for an entry/exit of the system.

The transmission system operator limits interruptible capacity, with the minimal number of interruptions, considering the amount of the missing capacity, the frequency and the duration of interruptions in the previous period and the integrity of the transmission system.

Any case when one or more suppliers is not able to provide enough natural gas (shortfall), according to the Transmission system code, is treated as a Market Disruption, or a situation in which the security of supply of end customers is jeopardized. The shortfall can be a consequence of general shortage of natural gas or other extraordinary circumstances, which due to insufficient supply can cause a pressure drop in the transmission system and jeopardize operation of the transmission system.

In the event of a general shortage of natural gas, the transmission system operator undertakes measures for limiting natural gas delivery, based on a Plan for consumption limiting, after the Government adopts a decision on the application of such measures.

If a Customer refuses to implement the supply limitation plan, the operator of the transmission system shall limit or cut of supply of the Customer. The transmission system is obliged to inform the Customers and the competent authorities about planned and expected interruptions in natural gas supply in advance and in time, unless it is necessary to undertake immediate measures to ensure safe and undisturbed functioning of a part or the whole transmission system.

There are no more detailed instructions for covering peak load or dealing with natural gas shortfalls. An experience from earlier crisis (gas supply cut in 2009, sanctions of the international community in the 1990s) indicate that in such situations is necessary to require fuel switch of end-users who have such options, considering environmental effects caused by gas supply interruption of industrial users, and necessary coordination with other energy systems (primarily electricity system).

4.5.3. **Quality and Maintenance of Infrastructure**

Maintenance of the transmission system and other energy infrastructure under the jurisdiction of the PE Srbijagas is carried out in accordance with the Transmission Network code [33]-[35], approved by the AERS. Requirements for ensuring proper maintenance to be fulfilled during the design and construction of gas stations, as well as the complete procedure related to the adoption and implementation of a Maintenance Program for the next gas year are stipulated by proper rules. A Maintenance Program should contain a list of entrances/exits that would be affected by a scheduled maintenance, an estimated period of entrance/exit capacities reduction, a level reduction for each capacity and a description of planed activities. Maintenance Program

10Energy entity, gas producer, or end user that made a contract on natural gas transmission.
prescribes monthly, quarterly, semiannual and annual inspections of installations. Upon the inspection, proper activities should be undertaken in the identified parts of the infrastructure.

Table 28 shows number and duration of planned activities on maintenance of the transmission system in the period 2015-2018. In this period activities were dedicated to relocation of some sections of pipeline, repairing of perceived damage, replacement of some installation parts, etc. During the maintenance activities total interruption of gas transmission through some sections occurred, thus maximum envisaged duration per activity was 3 days.

Table 28: Activities on maintenance of transmission system by PE Srbijagas

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Envisaged duration (in days)</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

For ensuring secure supply, maintenance of the transmission system, which has been successively built (some sections had been built 50 years ago) has a crucial importance (Table 29). By analyzing results, obtained from the transmission system examination by an intelligent pig, it was determined that pipelines were in good condition and all damages with defect depths that amount 70% or more of a thickness of the pipe wall were fixed [28].

Based on the undertaken activities for repairing of pipelines damages, it was found that outer damages were mainly caused by pipe corrosion (due to damage on insulation, poor installation of insulation,...), while inner damages were characteristic for gas pipelines that transported domestic gas.

Table 29: Age of the transmission system PE Srbijagas [28]

<table>
<thead>
<tr>
<th>Age</th>
<th>More than 50 years</th>
<th>30-50</th>
<th>20-30</th>
<th>10-20</th>
<th>1-10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (km)</td>
<td>170</td>
<td>819</td>
<td>618</td>
<td>260</td>
<td>236</td>
<td>2103</td>
</tr>
<tr>
<td>Share (%)</td>
<td>8</td>
<td>39</td>
<td>30</td>
<td>12</td>
<td>11</td>
<td>100</td>
</tr>
</tbody>
</table>

PE Srbijagas plans to, in accordance with the general European practice, test gas pipelines every 10 years and determine the dynamics of future investments in the transmission system, based on obtained results.

The transmission system and other energy infrastructure under the jurisdiction of Yugorosgaz-Transport are maintained according to the Guidelines for Gas Installations Maintenance and the adopted Maintenance Program for the next gas year, in accordance with the Transmission Network code [36], approved by the AERS. A Maintenance Program prescribes monthly, quarterly, semiannual and annual inspections of installations. If needed appropriate measures should be undertaken upon the inspection. During 2017, 3 inspections were carried out by the Emergency Management Sector of the Ministry of Interior, and no irregularities were noticed. In 2015 examination of the transmission pipeline at rivers and waterfalls crossings was performed by a PCM method (Pipeline Current Mapping). The PCM method is an indirect method for detecting outer corrosion of underground gas pipelines. The conducted testing indicated a completely satisfactory condition of pipelines, which was expected since the transmission system was built in the past 20 years, pre-insulated pipes were used and a system of catholic protection was installed.
Although, according the adopted Transmission Network code, the Maintenance Program for the next gas year should be published at an official web site, Yugorosgaz-Transport haven’t publish it yet.

Maintenance of distribution systems shall be performed in accordance with the Distribution Network codes, which each distribution system operator shall submit to the AERS. According to the codes, each distribution system operator adopts the Maintenance Program for the next gas year no later than 1 May, considering, as possible proposals of users and operators of related distribution systems. The maintenance program contains activities that affect reduction of distribution capacity, and include activities on connection to the distribution system, testing, repairing, replacement, re-commissioning, development and extension of the system, as well as preparatory and final works.

4.5.4. **Incentives for New Investment in Exploration, Production, Transportation and Storage of Natural Gas**

New infrastructural facilities of the gas pipeline system, i.e. interconnectors or natural gas storage facilities may, upon a request, be exempted from the right of access by the principles of transparency and non-discrimination under the following conditions:

- that investments in the new infrastructural facility increase competitiveness in the market and safety of supply;
- that the risk of investments in new infrastructural facilities is such that the investments will not occur unless the exemption is approved;
- that the new infrastructural facilities are owned by a natural or legal person that performs business operations within another legal person separated from the system operator within which the new infrastructural facilities will be constructed;
- that users of the new infrastructural facility bear the expenses of the facility exploitation;
- that the exemption does not prevent competition, efficient functioning of the internal natural gas market and efficient operation of the regulated system to which the new infrastructural facilities are connected.

The exemption is also applied in a case of a considerable increase of the capacity of existing infrastructural facilities and modification of this infrastructure ensuring development of new sources of natural gas supply.

In a case of interconnectors, an exemption act may be applied after consultations with other countries to which construction of an interconnector has an impact, or after consultations with relevant regulatory bodies.

Currently, in Republic of Serbia, there are no incentive measures for new investments in research, production, transport and storage of natural gas.

4.5.5. **Plans for the Construction of Energy Facilities to Ensure the Security of Natural Gas Supply**

Security of supply is related to ensuring and delivering natural gas to customers in required quantity in timely manner. Security of supply is improved by diversification of supply routes and sources and by construction of gas storages. Assessment of security of supply can be done by

11https://www.aers.rs/Index.asp?l=1&a=94.3
by system availability indicator (N-1). It indicates the daily operational flexibility of natural gas infrastructure and its ability to respond to consumption requirements under extreme conditions. The indicator is calculated as follows:

$$(N - 1) = \frac{E_{pm} + P_m + S_m - I_m}{D_{max}} \times 100 \%$$

where:

- D_{max} total daily consumption on a day with the highest gas demand with the probability of occurrence once in 20 years [Sm3/day],
- E_{pm} sum of technical pipeline capacities, gas quantities that can be transported over existing interconnections in a day [Sm3/day],
- P_m daily indigenous natural gas production [Sm3/day],
- S_m maximum daily withdrawn quantities from underground storage [Sm3/day],
- I_m maximum daily capacity of the largest gas supply infrastructure [Sm3/day].

Transmission system, in terms of infrastructure and from the standpoint of security of supply, is considered as satisfactory if the capacities of the entrances to the system are enough to meet total demand for natural gas, in a case of interruption of the largest infrastructure that has entrance to the transmission system, during the day with exceptional high natural gas demand with the probability of occurrence once in 20 years. This corresponds to values of (N-1) indicator higher than 100%.

For the gas network system of the Republic of Serbia values of the input parameters for calculating (N-1) indicator for 2017, are as follows:

- E_{pm} = 15 million Sm3/day (technical daily entrance capacity at Horgoš) [28],
- P_m = 1.329 million Sm3/day [25],
- P_m = 5 million Sm3/day (UGS Banatski Dvor),
- I_m = 15 million Sm3/day (technical daily entrance capacity at Horgoš),
- D_{max} = 17.274 million Sm3/day (consumption recorded on February 9, 201212) [28].

Calculated value of (N-1) indicator for 2017 is: $(N-1) = 36.6\%$.

This value cannot be considered as satisfactory, especially when it is compared with the values of gas systems of EU countries (Figure 3). Bearing in mind the predicted decline of indigenous production, the value of this indicator is expected to decline unless new interconnections with the neighboring transmission systems are introduced or the capacity of underground gas storage is extended [30].

12Data from PE Srbijagas; In the AERS Report for 2012 [11] is reported "In 2012 there was no problem with congestions, even in February when the lowest temperatures were recorded with the probability of occurrence once in twenty years ... ".

70
Security of Supply Statement – Republic of Serbia

Figure 3: (N-1) indicators for EU countries (in 2014 and 2016) [31]

According to the Program [3] construction of key energy objects for ensuring and increasing security of supply is planned:

Gas interconnection project Serbia – Bulgaria, the main gas pipeline MG-10 Niš - Dimitrovgrad (border with Bulgaria)

Realization of this project will increase security of supply \((N-1) = 66.5\%\), and make possibility for supplying from Russia and other supply routes: South corridor (Azerbaijan, LNG from terminals in Greece, etc). According to Program [3] this interconnection should be introduced by 2021.

Gas interconnection project Serbia - Croatia, main gas pipeline MG 08 Gospodinci (Futog) - Sotin (Croatian border)

Realization of this project will increase security of supply \((N-1) = 57.4\%\), and make possibility for opening supply routes from northern Africa, Italy via Croatia, or from foreseen LNG terminal in Croatia. According to Program [3] this interconnection should be introduced after 2023.

Gas interconnection project Serbia - Romania, pipeline Mokrin - Arad (border with Romania)

Additional entrance to the system will increase security of supply \((N-1) = 59.1\%\), increase reliability and create possibility of gas purchasing from other sources (from Romania or from transcontinental supply routes). Also, this project will have impact on unloading the main pipeline Horgoš - Batajnica. According to Program [3] this interconnection should be introduced after 2023.

Project for increasing the capacity of the Underground storage Banatski Dvor

This project envisages an upgrade of the underground gas storage in Banatski Dvor from current capacity of 450 million m\(^3\), to capacity of 800 to 1 billion m\(^3\) with maximum technical capacity of production of 9.96 million m\(^3\)/day (415,000 m\(^3\)/h) and maximum technical capacity of injection of 5.52 million m\(^3\)/day (230,000 m\(^3\)/h). By the project realization available gas quantities will significantly increase, especially in days with the highest loads \((N-1) = 63.0\%\). According to Program [3] this project should be completed by 2023. Since the project for the UGS Banatski Dvor construction was done as a mining project, the extension project should be a supplement to the existing mining project.
An additional impact of the underground gas storage capacity extension on security of supply would be an increase of the system's resilience to longer, total supply cuts from other transmission systems.

By realization of the projects envisaged in the Program [3] by 2023 (interconnection with Bulgaria and extension of UGS Banatski Dvor), the value of (N-1) indicator would increase to 94.8%, while realization of all aforementioned projects would lead to value of 143.6%. Greater connectivity of the Serbian transmission system with the network in Europe (Figure 4) would create opportunities for new sources of gas supply.

![Natural gas flow network in Europe](image_url)

Figure 4: Natural gas flow network in Europe [32]

In addition to the key infrastructural projects, it is necessary to continue with activities on the construction of the transmission system in order to ensure secure supply of some areas of the Republic of Serbia.

Planned projects to be constructed in the following period are as follows:

Main pipeline MG 01/II Itebej - Beograd Jug

Main single line pipeline of approximate length 130 km and diameter 610 mm should increase reliability of the Republic of Serbian transmission system by unloading the pipeline Kikinda-Pančevo.

Main pipeline Batajnica - Velika Plana – Niš

Main pipeline with length of 116+161 km and diameter DN 700 should increase reliability of the Republic of Serbian transmission system by connecting pipeline Niš -Dimitrovgrad and Batajnica.

Main single line pipeline RG 11-02 Leskovac - Vladičin Han - Vranje

Main pipeline of length 70.7 km, diameter 323.9 mm and maximal operation pressure of 50 bar; First section of the pipeline from PJC "Leskovac" to MMRS "Vlasotince" of 7.2 km and MMRS
"Vlasotince" (5,000 m³/h) were put into operation in 2013. Construction of 6 block stations, 2 main metering and regulating stations (MMRS "Vladičin Han/Surdulica" 5,000 m³/h, MMRS "Vranje" 10,000 m³/h) should be done.

This project is aimed to extend the national transmission network to south part of Serbia (area of Južna Morava) to municipalities Vlasotince, Vladičin Han, Surdulica and the city of Vranje, and provide opportunities for further development of gas system toward Bujanovac and Preševo, as well as for interconnection with transmission system of the Republic of Macedonia. By 2023, finalization of conceptual design, resolving of property issues and purchase of equipment and pipes, construction of pipeline from pipeline junction point PJC Niš to PJC Vladičin Han is planned.

For ensuring secure supply in the long term period, proper paining of the gas system is of the great importance. Based on the Energy Law [1], energy entities in charge for gas transmission and management of the transmission system are obliged to submit ten-year development plans of the transmission system to the AERS for approval. Transportgas Srbija haven’t submitted its ten years development plan yet [11]. In 2018, Yugorosgaz-Transport has submitted a "Plan of Yugorosgaz-Transport transmission system development for the period 2018-2027", which is currently a subject of public consultations [29].

4.5.6. Preventive Action Plan and Emergency Plan for ensuring the security of natural gas supply

The Government shall adopt the Preventive Action Plan for ensuring the security of natural gas supply, which shall comprise the assessment of risks in terms of the achievement of security of supply, as well as measures for mitigation of discovered risks referring to the needed transmission capacity that would satisfy the overall demand for natural gas and ensure supply to certain groups of end natural gas customers. Also, the Government shall adopt the Emergency Plan for ensuring the security of natural gas supply, which shall define measures, energy entities to be responsible for ensuring security of the transmission system operation and security of supply to certain groups of end customer, quantities and capacities of natural gas, in case of general shortage of natural gas.

Up to now, the Government has not adopted these documents. Ongoing activities are related to preparation of bases for creating Preventive Action Plan and Emergency Plan for ensuring the security of natural gas supply.

Emergency Plan is prepared in accordance to article 315 of Energy Law and in accordance to article 10 of Regulation (EU) no 994/2010 and it should be based to defined crisis levels in the case of natural gas shortage:

- define the role and responsibilities of natural gas undertakings and of industrial gas customers, and their interaction with the Competent Authorities;

- define the role and responsibilities of the Competent Authorities in the case of natural gas shortage;
- establish detailed procedures and measures to be followed for each crisis level, including the corresponding schemes on information flows;
- identify the contribution of market-based measures, notably those listed in Annex II of Regulation, for coping with the situation at alert level and mitigating the situation at emergency level;
- identify the contribution of non-market based measures planned or to be implemented for the emergency level, notably those listed in Annex III of Regulation, and assess the degree to which the use of such non-market based measures is necessary to cope with a crisis, assess their effects and define the procedures to implement them;
- describe the mechanisms used to cooperate with other countries for each crisis level;
- detail the reporting obligations imposed on natural gas undertakings at alert and emergency levels;
- establish a list of predefined actions to make gas available in the event of an emergency, including commercial agreements between the parties involved in such actions and the compensation mechanisms for natural gas undertakings where appropriate.
5. **CRUDE OIL AND PETROLEUM PRODUCTS**

Pursuant to the Energy Law [1], licensed energy activities in the petroleum and biofuel sector are:

- Production of petroleum products
- Transport of oil through pipelines
- Transport of petroleum products through petroleum product pipelines
- Trade in oil, petroleum products, biofuels and compressed natural gas
- Trade in motor and other fuels at the stations for supplying fuel into vehicles
- Storage of oil, petroleum products, biofuels and compressed natural oil
- Production of biofuels
- Production of bioliquid
- Blending of biofuels with fuels of oil origin
- Trade in fuels outside stations for the supply of means of transport

The energy activity may be performed by public company, business entity, i.e. any legal entity or entrepreneur which is in the possession of license for energy activity performance.

Transportation of crude oil through oil pipelines and petroleum products through product pipelines represent the energy activities which are defined as the activities of general interest by the Energy Law. They are carried out in accordance with this law and the law regulating the position of public companies. The rest of the above said energy activities are performed in compliance with the market principles.

Persuant to the Energy Law, no license is required for the energy activity of oil transport, oil derivatives and biofuels by other forms of transport, but the activity is important for the topic of security of supply and will be dealt with in the following text.

5.1. Production, Import, Export and Consumption of Crude Oil and Petroleum Products

5.1.1. Crude Oil

The necessary amount of processed crude oil is provided from import (over 70%) and a smaller part from domestic production from 63 oil fields and about 666 oil production wells. The largest number of oil fields is located in Vojvodina, in the region of Bačka (Velebit, Turija), of North Banat (Kikinda), of Central Banat (Zrenjanin) and South Banat (Jermenovci, Janošik) including oil fields in the region of Stig around Požarevac (Sirakovo, Bradarac, Maljurevac) [39].

The production and processing of crude oil in Serbia is carried out by NIS JSC and in recent years it is the only responsible for import in the Serbian market.

NIS JSC also owns the concession on a single block in Angola where is produced about 4.2 million tonnes of crude oil from 1985 to today. The oil produced in Angola (about 40,000 tonnes) is not included in the Energy Balance of the Republic of Serbia [15].
Domestic production of crude oil is decreasing in 2016, while simultaneously deficient quantities are provided by an increase in imports, which in 2016 amounted to 2,190,012 tonnes (Figure 5). In 2017, the production retains a slight downward trend, but the import volume increases to a value of 2,449,113. The energy balance for 2018 predicts a slight decrease (5%) of production.

All imported crude oil is mostly transported through oil pipeline of PE Transnafta that enters Republic of Serbia from Croatia near Bačko Novo Selo as a continuation of the Adriatic oil pipeline that begins in Omišalj (in the north - west of the island of Krk in Croatia), continues to Novi Sad and then to Pančevo. The other aspects of the transport of crude oil such as rail and waterways transports are not represented. In previous years a specified amount of about 200,000 tonnes was shipped via rail tankers from Romania.

The oil produced from domestic oil reservoirs is shipped from gathering stations through oil pipelines to Novi Sad Oil Refinery and further on refining to Pančevo Oil Refinery, and certain percentage (<10%) is transported by road tankers to Pančevo Oil Refinery.

5.1.2. Derivatives of Crude Oil

The supply of petroleum products is carried out from import and from domestic processing of crude oil, obtained from the Pančevo Oil Refinery. The Pančevo Oil Refinery within NIS JSC does processing of crude oil, while the liquefied petroleum gas is produced in Gas RefineryElemir and in the installations of former Hipol JSC now "Standard gas d.o.o. Novi Sad" (Standard gas) [11].

The quantities of produced derivatives in 2016 (Figure 6) amounted to 3,459,112 tonnes, while in 2017 they amounted to 3,508,079 tonnes, which represents an increase of 1.2%. Pančevo Oil
Refinery in 2016 increased the production of liquefied petroleum gas by 11% compared to 2015, while in 2017 was decrease of 23.3% [25].

The derivatives produced in the Pančevo Oil Refinery are shipped by using rail tankers, watercrafts (river tankers, barges, hovercrafts) and road tankers. The transport of petroleum products through petroleum product pipelines does not work because there is no built petroleum product pipelines network.

<table>
<thead>
<tr>
<th>Production of petroleum products (in tonnes)</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Diesel</td>
<td>1,073,903</td>
<td>1,047,495</td>
<td>1,142,290</td>
<td>1,182,882</td>
<td>1,273,116</td>
</tr>
<tr>
<td>Unleaded Gasoline</td>
<td>401,469</td>
<td>464,115</td>
<td>484,090</td>
<td>482,068</td>
<td>498,624</td>
</tr>
<tr>
<td>Liquide petroleum gas</td>
<td>128,571</td>
<td>108,986</td>
<td>121,117</td>
<td>165,768</td>
<td>127,210</td>
</tr>
<tr>
<td>Heating oil</td>
<td>47,928</td>
<td>124,999</td>
<td>136,723</td>
<td>138,514</td>
<td>128,275</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>395,446</td>
<td>365,944</td>
<td>355,142</td>
<td>388,871</td>
<td>379,519</td>
</tr>
<tr>
<td>Other products</td>
<td>1,001,619</td>
<td>967,266</td>
<td>1,078,359</td>
<td>1,101,009</td>
<td>1,101,335</td>
</tr>
<tr>
<td>Total</td>
<td>3,048,936</td>
<td>3,078,805</td>
<td>3,317,721</td>
<td>3,459,112</td>
<td>3,508,079</td>
</tr>
</tbody>
</table>

Figure 6: Production of petroleum products – comparative review of 2013 to 2017

In 2016, the trend of import growth continued (Figure 7), and the imported amount of derivatives was 1,072,959 tonnes, while in 2017 it is at a lower level and amounts to 985,152 tonnes. Motor fuels in 2016 registered an increase in imports of about 10%, while in 2017, there was an increase of about 2%.

Analyzing the structure of imported derivatives it results that the highest amount of imported products is the amount of euro diesel imported mostly from Hungary, Bulgaria and Romania. The gasoline has been imported from Hungary, Austria and Romania [25].

Regarding to the supply of derivatives from import, the amounts are delivered by vessels (barges, river tankers) along the rivers of the Danube and Sava, then by rail tankers and the rest by road tankers.
In 2016, the export of derivatives (Figure 8) was reduced to an amount of 739,704 tonnes, which represents a decrease of 4.3%, while in 2017 it was at the level of 768,362 tonnes. The increase of motor fuels export is particularly significant. In 2017, the Republic of Serbia’s total export was 416,171 tonnes of motor fuels which is almost 31% more than in the previous year or 37.7% more than 2015. The most prevalent was diesel with 219,504 tonnes, which is 71% more than in the previous year, followed by gasoline with 143,094 tonnes, which is 14% more than 2016. From other petroleum products, the bitumen export of 237,281 tonnes is significant, as well as the export of liquefied petroleum gas, which represents a decrease of 16% with an amount of 53,573 tonnes compared to 64,010 tonnes [25].

The export of petroleum products is performed by placement of diesel fuel in the bunker stations at three locations along the river Danube: Novi Sad and Prahovo, and in the middle of 2015 NIS JSC has put into operation a new bunker station in Belgrade for the supply of ships in domestic and foreign transport.

In Smederevo there is also a bunker station built for supplying of only domestic vessels in the country. In 2017, 14,333 tonnes of diesel were placed on the market at the bunker stations, while 19,830 tonnes were in the previous year. Compared to 2015, when it was 23,883, there was a decrease of 40% [25].

In May 2018, amendments were made to the Law on Ports and Navigation on Inland Waterways, which made the area of the bunker stations for the supply of ships clearly regulated.

<table>
<thead>
<tr>
<th>Import of petroleum products (in tonnes)</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Diesel</td>
<td>390,898</td>
<td>432,832</td>
<td>429,627</td>
<td>460,612</td>
<td>474,093</td>
</tr>
<tr>
<td>Unleaded Gasoline</td>
<td>51,775</td>
<td>53,084</td>
<td>39,168</td>
<td>50,924</td>
<td>78,457</td>
</tr>
<tr>
<td>Liquide petroleum gas</td>
<td>164,401</td>
<td>160,635</td>
<td>146,665</td>
<td>170,261</td>
<td>143,933</td>
</tr>
<tr>
<td>Heating oil</td>
<td>6,079</td>
<td>1,260</td>
<td>36</td>
<td>0</td>
<td>122</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>2,406</td>
<td>3,156</td>
<td>28,191</td>
<td>24,810</td>
<td>9,071</td>
</tr>
<tr>
<td>Other products</td>
<td>175,427</td>
<td>216,261</td>
<td>232,037</td>
<td>366,352</td>
<td>279,476</td>
</tr>
<tr>
<td>Total</td>
<td>790,986</td>
<td>867,228</td>
<td>875,724</td>
<td>1,072,959</td>
<td>985,152</td>
</tr>
</tbody>
</table>

Figure 7: The import of petroleum products (in tonnes) – comparative review of 2013 to 2017
Final consumption for energy purposes for 2016 (Figure 9) is at the level of 2,691,730 tonnes (an increase of 7% compared to 2015), while in 2017, it decreased by 3.1% and amounted to 2,610,377 tonnes.

In the structure of final consumption of derivatives for 2017, the industry participates with 13%, traffic from 77%, and other sectors with 10%.
5.2. Security of Supply of Oil and Petroleum Products

5.2.1. Balance of Oil and Petroleum Products for Year 2018 – Plans

The balance of crude oil, petroleum products and biofuels includes production, import and export of crude oil, refining of crude oil in refineries, and production, import, export and consumption of petroleum products.

Energy Balance of the Republic of Serbia for 2018 [25] is mostly determined in accordance with the realization and assessment by the end of 2107. The exact amount of all energy products can be seen only at the end of 2018.

According to the Energy Balance [25] the supply of crude oil and semi-finished products for processing in refineries will be provided from domestic production in the amount of 0.870 million tonnes (23%), while the import will provide an additional amount of required crude oil and semi-finished products in the amount of 2,839 million tonnes (77% of total needs) [25].

The processing of domestic and imported crude oil from the stock as well as components for processing (semi-finished products) will be carried out in Pančevo Oil Refinery.

In 2018, the processing of crude oil and semi-finished products is planned in an amount of 3.890 million tonnes while the domestic production of petroleum products is planned in the amount of 3.870 million tonnes [25].
In the structure of planned oil production the largest part will belong to a production of diesel with 33.3%, then production of petrol with 14.1%, heating oil 10.4%, liquefied petroleum gas 5.3% and other products 36.9% [25].

Having in mind the overall need for petroleum products in 2018, including the planned domestic production of petroleum products, the rest of the required amount of about 1.0 million tonnes will be supply from the import [25].

In 2018 it is planned to export 0.576 million tonnes of petroleum products. The final consumption of petroleum products in 2018 is planned to be about 3,542 million tonnes, of which 0.748 million tonnes are for non-energy purposes, while 2.795 million tonnes are for energy purposes. In this structure of final consumption of petroleum products for 2018, the industry participates with 14%, the transport with 76% and other sectors with 10% [25].

In a long-term framework the consumption of petroleum products is planned in compliance with the Strategy [2].

Table 30: Projection of consumption to 2030 [2]

<table>
<thead>
<tr>
<th>Consumption</th>
<th>Product</th>
<th>unit</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary energy</td>
<td>Crude oil and semi-finished products</td>
<td>thousands tonnes of oil equivalent</td>
<td>3,822</td>
<td>4,049</td>
<td>4,312</td>
</tr>
<tr>
<td>Final Consumption</td>
<td>Petroleum products</td>
<td>thousands tonnes of oil equivalent</td>
<td>3,368.8</td>
<td>3,595.6</td>
<td>3,853.1</td>
</tr>
</tbody>
</table>

5.2.2. Measures to be Taken in Case the Security of Oil and Petroleum Products Supply is Threatened

Concerning the security of supply, the area of oil is regulated by the Law on Commodity Reserves [40], which regulates the conditions for the formation, financing, disposition, use and renewal of the oil and oil derivatives emergency stocks, provision and maintenance of storage, as well as the operation and management of the emergency stocks and storage facilities on the territory of the Republic of Serbia as well as the Energy Law, which created the Energy Resources Management Board, as an administrative body within the Ministry in charge of energy, for performing executive and professional tasks relating to the required reserve of oil and petroleum products and natural gas reserve requirement.

Long-term, medium-term and short-term programs for the formation of required reserves have been adopted [40].

By the end of 2016, the Management Board of the Ministry in charge of energy for the purpose of forming obligatory reserves, purchased crude oil (16,000 tonnes), around 21,000 tonnes of diesel, 5,000 tonnes of heating oil – low sulfur - special NSG-S and 3,000 tonnes of motor gasoline. Also, in 2016, the procurement of about 14,000 tonnes of euro diesel was made. The Republican Directorate for Commodity Reserves, in accordance with the Law, holds in its reservoirs required reserves of oil derivatives, manages the construction of new and reconstruction of the existing warehousing capacities of the Directorate financed from the budget of the Republic of Serbia [25].

In 2015, the Energy Resources Management Board implemented contracts on the rights to optionally purchase of oil derivatives in accordance with the Law on Commodity Reserves and Directive 2009/119/EC [41].
In 2016, the Energy Reserves Agency selected by a public tender, a public private partnership advisor for the construction of a warehouse for required reserves. A tender was conducted and the contractor for the construction of a system for the recovery of steam (VRU) was selected at the warehouse of the Directorate for Commodity Reserves in Požega. Also, the Energy Resources Management Board performs annually the selection of contractors for the qualitative and quantitative analysis of derivatives as well as the selection of the insurance company for the insurance of goods in storage.

During 2017, the Energy Resources Management Board has procured 9,000 tonnes of euro diesel.

Having in mind that concluded optional contracts have expired due to the obligation of budget users to conclude contracts for a period not exceeding two years, and that the Republic Commission for the Protection of the Rights of the Bid has annulled the public procurement for option contracts in 2016 in the appeal procedure, the estimated number of obligatory reserves currently required is around 10. The new procurement of option contracts was realized, in accordance with the existing financial plan and public procurement plan in 2017, for 50,000 tonnes of Euro diesel and 10,000 tonnes of unleaded motor gasoline. This is the number of days in 2017 doubled.

The Energy Law [1] prescribes that in case of customers security of supply is threatened due to insufficient supply in the energy market or the occurrence of other extraordinary circumstances, the government can issue the document to approve the change of limit values of certain characteristics of the quality of oil derivatives that can be put on the market in the Republic of Serbia for the period of maximum six months. Measures may last as long as the circumstances for which they are prescribed are, or until the consequences of such circumstances are eliminated [1].

The law determines that the Energy entities performing the activity of oil derivatives production and oil, oil derivatives, biofuels and compressed natural gas trade are obliged to provide the operational reserves of oil derivatives that are equal at least to 15 days of its average selling in the previous year. The operational reserves of oil derivatives and coal used in the case of short-term disruptions in the market, caused by breakdowns and other unforeseen circumstances that endanger the safety of operation of individual parts of the energy system or the energy system in whole [1].

5.3. Technical and other Requirements that Liquid Fuels of Oil Origin and Liquefied Oil Gas Must Fulfil

Persuant to Article 337 of the Energy Law [1], petroleum products and biofuels set on the market have to complete the conditions arranged by the regulations for quality of liquid petroleum fuels and biofuels, by the regulations for protection of the environment and other regulations related to the market of petroleum products and biofuels [42], [43], [44].

Technical and other requirements for liquid fuels of oil origin used as motor fuels for the internal combustion engines and energy fuels which are the subject of trade on the market of the Republic of Serbia as well as the method of conformity assessment of liquid fuels are regulated by the Rulebook on Technical and other Requirements for Liquid Fuels of Petroleum Origin (Official Gazette of the RS, no. 111/15, 106/2016, 60/17, 117/17, 120/17 - correction and 50/18) [45].

Since enacting of the Rulebook on Technical and other Requirements for Liquid Fuels of Petroleum Origin in 2012 the significant progress in conformity of the quality of fuels with the European requirements has been achieved. Trade of leaded gasoline is forbidden on the market,
the quality of unleaded motor gasoline must fulfil all requirements of SRPS EN 228 Standard and the quality of diesel fuel must fulfil all requirements of SRPS EH 590 Standard (with the exception of gas oil 0.1 for starting of tractor engines, working machines and railway vehicles, as well as the vessels with diesel engines, which contain sulphur of maximum 0.10% (m/m)).

The Energy Law [1] prescribes that in case when there is a security risk of supplying customers because of insufficient supply on the market of energy and fuels or in case of other extraordinary circumstances, the Government can approve with the amendment the modification of limits for some quality characteristics of petroleum products that could be put on the market of the Republic of Serbia for a maximum period of 6 months. The extents could last as long as the circumstances for which they are prescribed, concerning the duration of consequences.

With the modifications of the Energy Law from 2012, the legal basis for compulsory marking of petroleum products is established, with the purpose of reduction of illegal petroleum products market and since December 1, 2013 the Regulation on Marking of Petroleum Products (Official Gazette of the RS, no. 51/2015, 5/2017) is being applied [46].

The legal base for monitoring of petroleum products quality is determined by the Energy Law from 2014[1] which is in accordance with SRPS EN 14274 Standard and since 1st December 2015 the Regulation on Monitoring of Petroleum Products and Biofuels Quality (Official Gazette of the RS, no. 97/2015, 5/17, 8/17 - correction and 119/17) is being applied.

The monitoring of the quality of oil derivatives is carried out in accordance with the Annual Program for monitoring the quality of oil derivatives, which is an integral part of the Ordinance on the content and manner of implementation of the annual program for monitoring the quality of oil derivatives and biofuels. The said Rulebook for the current year, in accordance with the Regulation, shall be adopted by the Minister in charge of energy affairs no later than March 31 of the current year. In the period from 1 January of the current year until the adoption of the Annual Monitoring Program, the Annual Monitoring Program is adopted for the previous calendar year.

Implementation of marking and monitoring of petroleum products and biofuels quality had the significant contribution in reduction of illegal market, the income growth from excises and taxes in the budget of the Republic of Serbia, in consumers' protection, as well as the fulfillment of internationally undertaken obligations regarding implementation of the Directives 2016/802/EC (which replaced the Directive 1999/32/EC) and 98/70/EC.

5.4. Data on Oil Infrastructure

5.4.1. The Refineries in Novi Sad and Pančevo

Crude oil refining in the Republic of Serbia is carried out in Pančevo Oil Refinery, which is belonging to NIS JSC.

The Pančevo Oil Refinery has been put into operation in 1968 by launching the first complex of plants with primary processing capacity of 1.32 MTA and with the release of other secondary plants in 1969; the refinery reached the design capacity of 4.8 MTA. Engineering for this plant was prepared by company SFI/Lummus France.

Located in Pančevo, near the Danube River at distance of about 2.5 km and at distance of about 15 km from Belgrade on the surface of about 160 hectares. The pipeline connection is connected to its own harbor on the Danube.

The crude oil can be transported to the oil refinery by pipeline, waterways, rail tankers and road tankers. Thanks to its refining capabilities, Pančevo Oil Refinery can practically process all types
of crude oil and produce fuels - liquified petrol gas, petrol, diesel fuel, jet fuel, heating oil and bitumen and petrochemical products. The capacity utilization is over 60% and storage facility has a capacity of 700,000 m³. Since 2014, all domestic and imported crude oil is processing with a total processing of about 3 MTA [47].

Shipping products from the Pančevo Oil Refinery are transported by barges, road and rail tankers while the supply of HIPP is done through product pipelines.

Adjacent to Pančevo Oil Refinery there is "HIP-Petrohemija a.d. Pančevo" (Petrohemija JSC), which consists of plant for pyrolysis of primary petrol to produce ethylene, factory "Etilen".

The Refinery provides most of the raw material for this plant, so the pyrolysis petrol which returns to the Refinery is very rich in aromatic hydrocarbons, especially in benzene. The crude primary petrol from Refinery to Petrohemija JSC and the pyrolysis petrol from Petrohemija JSC to Refinery are transported through petroleum products pipelines.

In recent years the constant modernization of the Refinery has expanded its primary and secondary capacities.

The construction of a new refinery plant is under way, which will enable the increase in the production of liquefied petroleum gas, all types of gasoline and diesel, which will start operating in 2019.

The location of Pančevo Oil Refinery is very good, from the standpoint of the market and traffic capabilities; however, on the grounds of environmental protection in Pančevo and the environment, the key drawback is the wind rose, which greatly contributes to the increase of pollutants and unpleasant effects on the population of the Town of Pančevo and surrounding villages.

Novi Sad Oil Refinery presents a complex of refining and auxiliary factory plants for refining of oil and petroleum products, tank, transport - manipulative, research and laboratory facility and other accompanying facilities. It is located in the industrial zone of Novi Sad, located directly on the Danube and the navigable DTD channel. The refinery was put into operation in 1968, with designed capacity of refining 3 MTA.

In recent years, the refinery mostly processed the domestic oil of Velebit type using production capacity of only 0.5 MTA.

Reservoir capacities have been reoriented and now they are a warehouse crude oil terminal.

5.4.2. Oil Pipeline Managed by PE Transnafta

PE Transnafta performs the energy activity of transportation and management of transportation system. PE Transnafta performs the energy activity of general interest, supplying the Novi Sad and Pančevo Oil refineries with crude oil. The pipeline with a total length of 154 km stretches from the Croatian border on the Danube river through Novi Sad and Pančevo. This pipeline continues to JANAF, which departs from the port of Omišalj on the island of Krk in Croatia and across the Sisak Refinery, their last block stations Sotin and river Danube enters Serbia. The first block station is in Bačko Novo Selo, and the pipeline via terminals PE Transnafta with the Novi Sad Oil Refinery extends until the Pančevo Oil Refinery (via measuring station of PE Transnafta). The imported crude oil is transported through all stations along the route, and the domestic oil trough local route from Novi Sad to Pančevo. The pipeline infrastructure is represented by: terminal in Novi Sad with a storage capacity of 2x10,000 m³ and a pumping station, eight block stations along the pipeline, measuring station with Pančevo Oil Refinery, cathodic protection system and supervisory control system of oil pipelines.
The oil pipeline is divided into two sections:

- DN-1 (Bačko Novo Selo - Novi Sad, a length of 63.3 km in diameter of 660 mm, pressure classes ANSI 300 transportation capacity 9 MTA, 1000 m³/h.) with 38 crossings of watercourses, 20 road crossings, 6 railway crossings, 3 dams, 2 swamps and 5 pipelines.

- DN-2 (Novi Sad - Pančevo, a length of 91 km in diameter of 457 mm, pressure classes ANSI 400, transport capacity 6 MTA) with 95 crossings of watercourses, 17 road crossings, 4 railway crossings, 6 dams and 3 pipelines.

Total average volume of transport - approximately 3 million tonnes/year [48].

5.4.3. Oil Pipelines Managed by NIS JSC

For domestic transport of crude oil to the Novi Sad Oil Refinery, the oil pipelines which are managed by NIS JSC and by which the crude oil is transported from the dispatching stations are in function. It's about the oil pipeline from the delivery station "Kikinda Field" to the delivery station in Elemir in a length of 42.9 km, a pipeline from the delivery station in Elemir to Novi Sad Oil Refinery in a length of 39.5 km with a diameter of 257.4 mm, which is used for delivery of oil type "Kikinda" as well as the pipeline from the delivery station "Nadrljan" to Novi Sad Oil Refinery in a length of 86.4 km, a diameter of 203.3 mm and with a capacity of 0.5 MTA [39].

5.4.4. Petroleum Product Pipelines in the Republic of Serbia

The infrastructure for the transport of petroleum products through pipelines in the Republic of Serbia does not exist. Technically speaking, the product pipelines exist only between Petrochemical complex and Pančevo Oil Refinery for transport of semi-products and the product pipelines through which were transported ethylene and propylene to the Romanian border and further to Solventum in Romania.

The total length of the pipeline is about 65 km in the Republic of Serbia and about 50 km through Romania and it consists of two parallel product pipelines: Ethylene in a diameter of 168.3 mm and Propylene in a diameter of 114.3 mm, which is not in function at the moment.

PE Transnafta has initiated the project System of product pipelines through Serbia. The concept of product pipeline system means that the fully supply of the market of Serbia and partly supplying of peripheral areas of surrounding countries (Croatia, Hungary, Bulgaria) is carried out from the Pančevo Oil Refinery. Starting from Pančevo as a center of supply of derivatives, the product pipeline system routes branch out to Novi Sad, Sombor, Belgrade and Niš, over Smederevo and Jagodina. In these cities, there would be located the terminals with appropriate storage capacities, pumping stations (secondary and main pumps) and with measuring points for commercially measurement of received and delivered quantity of motor fuel. Each of the terminals will be equipped with a plant for collection of volatile hydrocarbon and aromatic components from the storage tank.

PE Transnafta performed all the planning and design of technical documentation Feasibility Study and Preliminary Design and Assessment of environmental impact for the route section Pančevo - Novi Sad and Pančevo - Smederevo.

The construction project for the construction of the section Pančevo-Smederevo is in final phase of preparation.
5.4.5. The Terminals for Crude Oil

Crude oil storage tanks are located on the route of the crude oil pipeline, more precisely at terminals of PE Transnafta in Novi Sad and at the Terminal Novi Sad within the Novi Sad Oil Refinery and Pančevo Oil Refinery owned by NIS JSC.

PE Transnafta Terminal has four tanks for crude oil, in volume of 10,000 m3 each, out of which two are in the function of transport and two are intended for storage.

NIS JSC at the Terminal in Novi Sad Oil Refinery has storage tanks capacity of cca 140,000 m3 for storage of crude oil. All tanks has been reconstructed in the last three years. Also on dispatching stations Kikinda Field, Tisa and Nadrljan there are storage tanks in the function of local transport of crude oil in the capacity of over 70,000 m3[39].

In Pančevo Oil Refinery there are storage tanks for technological processes of total capacity of about 700,000 m3 [39].

5.4.6. Storage of Petroleum Products

The storage capacities in the Republic of Serbia are in dispose of Republic Directorate for Commodity Reserves (approx. 180,000 m3) PE Transnafta (approx. 74,000 m3) as well as the companies performing the energy activity of crude oil, petroleum products and biofuels storage and trade of crude oil, petroleum products, biofuels and compressed natural gas.

In 2017 there were in total 21 licenses for storage of crude oil, petroleum products and biofuels.

Among the companies that are in dispose of licensed storage tanks for storage of crude oil and petroleum products, the largest capacities has NIS JSC (100,000 m3). It is followed by Lukoil, PE EPS and PE Transnafta. These four entities represented in total about 80% of entirely licensed storage capacities in 2016 [49].

In 2017 there were in total 46 licenses for trade of crude oil, petroleum products, biofuels and compressed natural gas.

Among the companies that are in dispose of licensed storage tanks for trade of crude oil and petroleum products, far the largest capacities are in dispose of NIS JSC It is then followed by PE Transnafta, Lukoil, Naftachem, Mitan oil, EKO Dunav, Miletić Petrol, Speed d.o.o. and VML, which together with NIS JSC own approx. 90% of total licensed capacities.

Petrol LPG in Smederevo and Standard gas, Energreen MTV and Hipol JSC in Odžaci have also significant capacities for liquefied petroleum gases [50].

5.4.7. Stations for Motor Fuels Supply of Vehicles - Number and Locations of Petrol Stations

Motor fuels and other fuels trade at stations for supply of means of transportation is the retail trade in terms of regulations by which the trade section is regulated. Retail sale of petroleum products in Republic of Serbia is performed by companies in ownership by domestic and foreign companies, which dependent entities are registered in Serbia.

In 2017, the number of licensed business entities which are engaged in retail sale is 426 and this is a decrease of almost 10% compared to 2016 when this number was 470 [11].

This is the consequence of the abolition of licenses to companies that have performed this activity on one or a small number of stations for the supply of means of transport. The objects were taken over by business entities that perform activities on a number of stations. At the same
time, there has been a decrease in the number of stations for fuel supply of vehicles (petrol stations PS).

In 2017, the Ordinance on Technical Standards for the Safety of Fire and Explosions of Fuel Supply Centers in Road Transport, Small Craft, Smaller Commercial and Sports Vehicles (Official Gazette of RS, no. 54/2017) entered into force, which prescribes technical norms for safe installation, as well as fire and explosion safety for the construction of new facilities, and the upgrading, adaptation, reconstruction and rehabilitation of existing facilities of fuel stations for transport vehicles in road traffic, less h vessels, small business and sport aircraft, as well as handling and technical standards for equipment, installation and equipment for safe storing and transferring fuel to these stations.

Based on data from the Ministry in charge of energy, at the end of 2017, the total number of active stations for the fuel supply (petrol stations PS) in Serbia was 1.472 of which 333 NIS a.d. Novi Sad (33%), Lukoil 115 (8%), Knez Petrol 83 (6%) and OMV 61 and EKO 54 (4%)

The largest number of petrol stations 416 (57%) is located in the city, then in the village 140 (19%), on the main road 112 (16%), while on the highway there is only 54 (8%).

The five companies with the largest number of petrol stations: NIS JSC, Lukoil Serbia, Knez Petrol, OMV Serbia, EKO Serbia, at the end of 2016 had 625 petrol stations [51].

Other petrol stations which represent almost 50% are owned or leased by a large number of licensed entities that have from one to several stations and are not included in the analysis.

5.5. Program of Modernization and Investment of Refineries

The program of modernization of Pančevo Oil Refinery envisaged the total price of the project in the amount of 547 million euros, of which 396 million goes to construction of hydrocracking complex, the rest of 151 million euros is foreseen for the projects of ecological significance - the construction of plants for the production of hydrogen in Pančevo Oil Refinery, as well as the modernization and construction of industrial infrastructure of Refinery [39].

The project was initiated by signing a contract with engineering company CBI&Lummus, in September 2009. The start of construction is planned for the June 2010 and ending in late 2012.

The investment program, which included the modernization of production capacities and technological reconstruction of the processing complex, in order to increase product quality up to the standard Euro - 5 as well as the environmental protection was implemented to the fullest extent. Until now it has been invested into environmental projects for over 60 millions €, in parallel with the development of modernization of production. Thanks to the modernization, NIS JSC will fully satisfy needs of the domestic market for fuels with 10 ppm S and unleaded petrol.

The realization of the complex for mild hydrocracking and hydro (complex MHC/DHT) in Refinery Pančevo, enabled the NIS JSC to completely switch to the production of ecologically clean fuel - unleaded petrol and euro diesel with a sulfur content not exceeding 10 ppm.

In 2016, the realization of Deep Processing project ("Coking") continued which is the second phase of modernization of the refining complex, with the aim of completing the desulphurisation process in refinery capacities.

Also, the capital overhaul at the Pančevo Oil Refinery was successfully carried out. During the capital overhaul, a hydrocracking catalyst was replaced in order to increase the yield of medium distillates.
The contract for the implementation of the final phase of project „Deep Processing” was signed, a new heat exchanger Packinox was put into operation, a gas line installation project was completed. New types of oil "Kirkuk" and "Forcados" have been started.

The deconservation and start of the plant "Small" atmospheric distillation and Merox kerosine were performed in order to increase the volume of processing and production efficiency.

In accordance with the draft of Program[1] for the forthcoming period, projects are envisaged as part of the project "Deep Processing".

The project also includes the implementation of delayed coking technology as the second phase of modernization of processing capacities of the oil refinery in Pančevo.

This project will allow the increasing of depth of processing (to 92%) and increasing of production of white derivatives (to 85.8%), while simultaneously it will improve and increase the efficiency of the processing process, the availability of the plant and the maximization of level of optimization of energy costs.

The realization of the project, along with other measures that will also be implemented in the Pančevo Oil Refinery, the Energy Intensity Index (IEI, determined based on the Solomon methodology) will be almost equated with world refineries whose IEI is positioned as a benchmark index [3].

During 2017, the construction site for the delayed coking unit was opened within the "Bottom of the Barrel" Project, which marks the beginning of a new development cycle for the refinery and further modernisation of refinery processing.

During 2017, the following was obtained: energy permit, building permit for the construction of a temporary access road, and facility demolition permit.

Preliminary Designs were controlled by the experts of the Review Committee and received a positive opinion, which is a precondition to obtain the Building Permit. A public consultation was held and an approval obtained for the Environmental Impact Study.

Building permit was obtained and construction commenced within the Work Package 1 (Construction of the delayed coking unit and new auxiliary units: for amine regeneration, sour water stripper with phenol removal unit) of the ‘Bottom of the Barrel’ project. EPCm contract was signed for the Work Package 2 (Reconstruction of the existing units connected to the delayed coking unit, namely MHC/DHT, LPG, SRU) with the selected contractor.

Permits were obtained for the reconstruction of SRU II, MHC/DHT and Merox plants as part of Work Package 2.

The Pančevo Oil Refinery obtained IPPC permit concerning integrated pollution prevention and control, which goes to prove that the production process at the Refinery is entirely compliant with the highest domestic and European environmental standards.

During 2017, capacity constraints of BA-2101 furnace were removed, and the bottlenecks were given a test run to achieve the maximum capacity of the FCC unit.

A programme of measures for improving the operation of rotating equipment was developed.

In early March, compliance of controlling processes for factory production of polymer modified bitumen with the reference standard EN 14023 was successfully recertified, and also for road bitumen according to EN 12591 standard in early October.

Commercial production of bitumen and polymer modified bitumen continued in mid-February 2017, following a successful regular annual overhaul of the Bitumen Unit.
In April 2017, the scheduled overhaul of the Alkylation Unit was completed.

In July 2017, Visbreaking Unit was overhauled, while FCC unit was repaired and put into operation in August. In September, running repairs were made on S-2400 (diesel fuel dewaxing unit). A SARU unit was overhauled in October, a sulphur granulation plant was put into operation in November, and new burners were installed in the BA-2201B furnace in December.

During 2017, 22 tanks at Manipulation were repaired.

5.6. Overview of the Technological Security of Oil System, Quality and Maintenance of Oil and Petroleum Products

According to the Article 324 of the Energy Law [1], energy entities who realizes the energy activities of oil transport through oil pipelines, the transport of petroleum products, storage of oil, petroleum products and biofuels, the wholesale of fuels for the supply of vessels, the retail sale of fuels for the supply of vessels and biofuel production, are obliged to use and to maintain energy plants in accordance to the technical regulations and standards relating to the activity they perform, as well as the protection from fire and explosion, environmental protection determined by law and other regulations.

The conditions prescribed by this regulation are: pressure regulation and safety measures against exceeding the allowed working pressure, marking the route of the pipeline and product pipeline, the protective zone of oil and product pipelines, inhabited buildings, spaces and infrastructural objects in the protected zone of oil and product pipelines and work area, dangerous zones and corrosion protection of oil and product pipelines, conditions and mode of remote monitoring and management, conditions of design, installation and maintenance of electrical equipment and installations in dangerous areas, the requirements and testing of pipelines and product pipelines during the construction and before they are put into operation, the conditions and modes of use and handling of oil and product pipelines and their maintenance during operation, repairing and extraordinary events, conditions and modes of corrosion protection and of leaking of oil and product pipelines; examination and maintenance of security devices, conditions and method for protecting the oil and product pipelines, and protecting of their related overground devices, plants and spaces from unauthorized use or damage.

The pipeline PE Transnafta from the Croatian border to Pančevo has an installed SCADA system for remote control of vents on the block stations along the route of 154.3 km. It is also established a system for the detection of leaks Motorola MOSCAD by which the slightest leak is detected for a short period of time. A wireless remote control system is installed in case of a broken fiber cable that is the basic means for transmitting communication.

In the main dispatching center in Terminal Novi Sad, a video surveillance with motion detection and alarm is installed in each block station.

Every five years the recording of status of pipeline performs by passing the intelligent inspection device (pig) on the basis of which it receives a report of the status of pipeline located on damaged places, the degree of damage and the remaining service life of pipelines, all in accordance with European standards relating to the integrity of the pipeline.

During 2016, PE Transnafta performed in line inspection of the section from the border with Croatia to Novi Sad, and in 2017, the remediation of critical sites was executed according to the obtained test report.

There have been carried out periodically inspection of riverbed of rivers Danube and Tisa in place where pipeline crosses through watercourses to ensure preventive response and to prevent accidents.
The Article 327 of the Energy Law [1] defines that the energy entity carrying out the transport through oil pipeline or transport of petroleum products through product pipelines establishes the Rules of Procedure of the system for transport through oil pipelines and the Rules of Procedure of the system for transport of petroleum products through pipelines, which include, in particular: technical conditions for the safe operation of system, procedures in case of disaster and critical situations, or interruption of transport, the rules on access to the system for transport of oil and petroleum products, requirements regarding the quality of oil and petroleum products which are given for transport, rules on measurement with defined necessary measuring devices and other transport conditions.

PE Transnafta applies valid document Rules of the transport system [52] which defines all activities in order to provide safe and secure transport and storage of crude oil.

On the route of the pipeline from the dispatching station in Elemir to Novi Sad Oil Refinery, the system of leak detection Krohne is implemented, and also the installation for system's measuring at the entrance to the refinery system by which all parameters of flow are received in a real time.

In 2017, in the final phase, the relocation of a part of the pipeline route in the highway zone and the industrial zone of Novi Sad. After connecting the new part of the route to the existing system, the shooting will be carried out by intelligent oil pipelines coming to the Transnaft Terminal.

PE Transnafta is successively cleared the technological and storage tanks at the Terminal Novi Sad, recovering them and bringing in excellent working order.

The cleaning is performed every 10 years and in that period testing of tanks and reparation of any damage are done as well as the laser measuring with drafting of volume tables is conducted every 5 years, all in accordance with the Rulebook on Types of Criteria that is Required Verification and Intervals of their Periodic Verification (Official Gazette of the RS, no. 49/2010 and 110/2013) [53].

JP Transnafta elected the contractor in 2016, and in 2017 reconstruction of the manipulative pipelines was carried out at the Terminal Novi Sad.

The activity of the transport of products through product pipelines is not done because there are no functional product pipelines built on the territory of the Republic of Serbia.

PE Transnafta initiated the drafting of technical documentation in order to implement the project System of product pipeline through Republic of Serbia, which would include the construction of a pipeline from Sombor, through Novi Sad, Pančevo, Smederevo and Jagodina to Niš with a branch from Pančevo to Belgrade. Also, the project envisages the construction of the terminal at specified locations. This would achieve a safer and more secure transport with minimal impact on the environment. The total length of oil product amounted to 402 km with a capacity of 4.3 MTA.

By the end of 2016, the geodetic and hydrological psychiatric substrates have been completed, while in 2017 the Project for the execution of the section Pančevo – Smederevo was under construction. The preliminary design includes sophisticated equipment for remote control and monitoring and leak detection.

At terminals and warehouses of NIS JSC and other licensed entities for petroleum products storage and wholesale the substitution of pouring of the charging system performed to avoid evaporative losses and to reduce environmental pollution. Also, the systems for the filling of petrol will be installed for condensate recovery units (VRU units) [39].

The port activity is defined by the Law on Amendments to the Law on Navigation and Ports on Inland Waters (Official Gazette of the RS, no. 73/10, 121/12, 18/15, 96/15 – other Law, 92/16,
In the Republic of Serbia there are 1,364 km of navigable rivers and channels. Transport of derivatives by waterways is done mainly on rivers Danube and Sava and the reception and dispatch of products is done at locations Bezdan, Novi Sad, Sremski Karlovci, Pančevo, Smederevo and Prahovo where a modern ports are built respecting all regulations and safety measures in terms of environmental protection (protective dams, skimmers).

River fleet engaged in transport must realize the requirements in terms of security in accordance with the Regulations on the manner of transport of dangerous goods in water transport and obligations of the participants in the transport of dangerous goods by extraordinary events (Official Gazette of the RS, no. 125/2014). Water traffic in the transport of dangerous goods is done by boat which is celebrated in accordance with the European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways ADN (European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways). (Official Gazette of the RS - International Treaties, No. 8 / 2017-1 of 04 September 2017).

5.7. Capacities for Import and Export of Crude Oil and Petroleum products

According to the data from the Energy Balance for 2017 [55], the transport of petroleum products in the Republic of Serbia is carried out by rail, shipping and road transport. From Refinery to terminal plants it is mainly performed by railway and ship transport, and to final customers by road transport. Currently available capacities of specified types of transport satisfy all needs for transport of products. The only provider of pipeline transport of crude oil in the Republic of Serbia is PE Transnafta. The activity of this company is oil pipeline transport through the Republic of Serbia.

5.7.1. Capacities for Import and Export of Crude Oil

The available capacities for import of crude oil are not fully used and the capacity of the oil pipeline, which manages PE Transnafta and which amounts 9 MTA is currently using less than 30%. Considering that the Novi Sad Oil Refinery is currently not operating and for which the capacity of 3 MTG has been reserved, the capacity of the direction to Pančevo from 6 MTGs is slightly above 50%. There is no possibility to export and reversible transport through existing pipelines and there are not built other pipelines that could carry out the export of manufactured domestic oil via oil pipeline transport. In 2017, was imported 2,449,113 tonnes of crude oil [15].

An alternative to pipeline importing of significant quantities of crude oil represents the import by barges on the Danube from Konstanca, but there are several factors for the inefficiency of this mode of transport. The main reason is the restriction of mobility of Danube in Djerdap hydroelectric power plants and the absence of river fleet capacity which could deliver at the optimal time the necessary amount of crude oil according to the planning needs of the processing [39].

The condition and capacity of railway tracks in Serbia represents a limiting factor for significant applications in imports of crude oil [39].

Domestic crude oil is transported by pipeline from the dispatching stations to Novi Sad Oil Refinery and shipping continues to the Pančevo Oil Refinery. Oil - type Velebit due to its bad rheological transport properties must be mixed with imported or domestic crude oil, and only by bringing to the conditions prescribed by the rules of the transmission system of PE Transnafta can be transported to the Pančevo Oil Refinery.
When it comes to the waterways transport of domestic crude oil there is a possibility for transport of domestic crude oil by pipelines from the dispatching station to the refinery. The biggest dispatching stations of NIS JSC Nadriljan and Elemir have the possibility of shipping of crude oil through barges but that mode of transport in the regular work of the pipeline is not implemented [39].

The transport of crude oil by tanks is only carried out from domestic oil fields (Turija fields of South Banat and Stig) from collecting stations that are not connected by pipelines with delivery stations previously mentioned. These are amounts that do not exceed 10% of total production. When the Novi Sad Oil Refinery stopped working, the crude oil from the oil field Turija is shipped to the Pančevo Oil Refinery by tank trucks, as due to its unfavorable rheological properties can not be transported by pipeline [39].

5.7.2. Capacities for the Import and Export of Petroleum Products

On the market a significant number of licensed entities who import derivatives by rail, car tanks, river vessels (river tankers, barges and self-propelled tanks) in its property or leasing.

The import of petroleum products by rail mostly is carried out by rail tankers in property of NIS JSC or Standard Logistic while the import by vessels, except NIS JSC (for which transportation is performed by "Jugoslovensko rečno brodarstvo a.d. Beograd") is performed by several companies with their own fleet (Speed Ltd, Naftachem Ltd, Kazuk Ltd, Ladjar Kupra, Rubikon Shipping, Dunav Oil Trans, Judra Ltd, Ladjar Transport Ltd, Euro Gas Subotica, MB Gas Oil, Mario MilTrans Ltd [39]).

With the modernization of Pančevo Oil Refinery and achieving of products quality on European level, NIS JSC has reduced the import while Intermol and Lukoil stayed the leaders of import.

NIS JSC mainly does the export of petroleum products by rail transport using rail tankers, by waterways using barges and by road transport using truck tanks.

5.8. Overview - Geographical Origin of Imported Fuels

Based on the available data of Ministry in charge of energy which is composed from database that is filled by entrepreneurs [56] as the data that the ministry receives from the Customs Administration, and in accordance with the classification of Section 4 of Anex B of Regulation (EC) No. 1099/2008 an overview of geographic origin and percentage of imported fuels is made.

From the table below (Table 31) it is seen that LPG is a fuel which is imported from a lot of different countries and a consequence is in a large number of licensed entrepreneurs as well as the minimum of necessary technical capacities for its storage, which is not the limiting factor in the market and do not prevent competition.

In 2017, the crude oil is from Russia (Novy Port, REB), Kazakstan (CPC) and Iraq (Kirkuk), while the refinery gas is from Russia. In 2017 compared to 2016, imports of Kirkuk Oil increased significantly, from 30.44 to 53.56%.

The primary petrol is from Croatia, while the motor gasolines are mostly imported from Hungary, Austria and Romania and because of that we have many big international companies such as OMV, Mol, Lukoil. Hungary is also the country from which most of the energy products are imported and whose percentage is increased in relation to 2016 [25].

Diesel fuels are imported from different areas opposed to gasolines: Hungary, Romania, Bulgaria and Slovakia. The paraffins, bitumens, petroleum coke and lubricants include different spectrum of products[25].
Most of the market participants is provided by euro diesel from the domestic resources, opposed to previous year when the only supply was from the import [25].

Compared to 2015 and 2016 in 2017, the number of countries from which significant quantities of derivatives are imported are reduced. Hungary, Romania, Croatia and Austria are the countries from which more than 75% of the derivatives are imported.

Table 31: Table of geographic origin of imported fuels [25]
6. CONCLUSION

Regarding electricity, the production from thermal power plants in 2017 was lower than in 2016. The main problem is the poor quality of coal and the uneven distribution of coal from MB Kolubara during the year. Three reasons are recognized as explanations for this situation. The first reason is operational and refers to the problem of the presence of water in the land being excavated, the appearance of landslides in the coal mining area, and the malfunctions that occur during the production process. The second reason is the delay in the realization of the project that is expected to lead to the solution of the problem of secure supply of the branch of the Nikola Tesla Thermal Power Plant (TENT) with coal of prescribed and uniform quality and also bring significant savings, as well as reducing specific coal consumption. The main problem is the relocation of infrastructure facilities that prevent the opening of new mines, the expansion of excavation capacity to existing ones, and the maintenance of the existing digging dynamics on individual mines.

Natural gas sector is characterized with a declining trend of indigenous production, since the most of the gas fields are in the final stage of exploitation. In recent years, there hasn’t been significant discovery of new gas deposits, which will result in a steady increase of natural gas import in the future. Analyses of the energy balance of the country indicates a steady increase of consumption of this energy source in all sectors of consumption. The main risk in natural gas supply is related to predominant source of supply and to a single supply route. In the previous period, occurred situations, of significant reduction in the delivered daily quantities of imported natural gas into the system, due to the problems not caused by Serbia. Short-term measures are the withdrawal of stored quantities from the underground storage Banatski Dvor and the interventional gas supply from countries in the region, as well as the substitution of this energy source by other energy sources (to the maximum extent possible). Medium-term measures include the expanding of the Banatski Dvor storage capacity and the construction of new interconnections with countries in the region (Bulgaria, Romania, Croatia). Long-term measures include cooperation in international projects for ensuring new directions of supply, as well as securing of new contracts for the supply of natural gas from new sources. In this way, the security of supply of the domestic natural gas market should be significantly improved, reliability of the system ensured, and the possibility of purchasing natural gas under more competitive conditions established. The possibility of reducing the transit costs, as well as the possibility of supplying natural gas from Russia and other directions of supply, should be established. The possible new supply routes and gas sources are as follows: South Corridor (Azerbaijan, liquid natural gas from the terminal in Greece, etc.), natural gas from the Republic of Romania, North African gas from the via of Italy (via Croatia), or via the foreseen terminal for liquid natural gas in the Republic of Croatia.

Significant progress in security of supply increasing, in terms of crude oil and oil products, was achieved through the establishment of a system of mandatory reserves of the Republic of Serbia and the implementation of the storage filling dynamics in accordance with the adopted Action Plan. At the same time, it is actively working on the reconstruction of existing and construction of new storage capacities at existing terminals, as well as considering the possibility of other modes of financing the construction of new storage terminals.

From year to year, the Energy Reserve Directorate provides new quantities of petroleum products, as well as tickets, in accordance with the Law on Commodity Reserves and Directive 2009/119/EC. It is necessary to achieve the planned dynamics of emergency stocks forming in order to provide quantities for 90 days of net imports or 61 days of inland consumption, by January 1, 2023.
Compared to the previous period, capacities in public ownership for storage of mandatory reserves of the Republic of Serbia have been increased and the first quantities of crude oil and oil products have been stored.

Reconstruction of existing and construction of new storage facilities for the mandatory reserves on defined locations should ensure availability of products in the optimal period for the entire territory of the Republic of Serbia.

On the other hand, the constant trend of crude oil production decline in the country requires an increase in imports and a greater dependence of the Republic of Serbia on import volumes. The negative trend in crude oil production in the country can be partially stopped by investing more significant assets in the exploration and exploitation of new oil fields, both the geographical locations and deeper layers of current landfills. In addition, in the process of production, secondary and tertiary methods can be introduced in line with the most up-to-date global trends in this field.

The constant trend of crude oil production decreasing requires import increase and a greater dependence of the Republic of Serbia on import volumes. The problem of just one direction of crude oil supplying still remains. It is a part of the pipeline infrastructure of the former Yugoslav oil pipeline operated by PE Transnafta. In the reporting period, however, there was no threat to crude oil supply of the Pančevo Oil Refinery.

Providing a new direction for crude oil import by pipeline in the coming period is essential. By establishing new interconnections, the Republic of Serbia would have significant flexibility in this regard.

Construction and implementation of Oil product pipeline network through Serbia, and connection with the neighbouring countries, will allow secure and safe transport and presence of sufficient quantity of oil products at any time. In addition to the proven cheapest, safest and fastest way of transportation, introducing this type of transport the Republic of Serbia would also unload the river transport. According to the undertaken obligations and the signing of the ADN Agreement, which regulates the transport of motor fuels by barges with double bottoms on inland waterways, the Republic of Serbia has committed to provide this type of transport for the petrol fractions by December 31, 2018. This obligation, in view of the lack of an adequate river fleet, greatly increases costs and complicates the transport of oil products from the refinery to the consumers. By introducing the pipeline transportation system, the existing oil products transport by Danube on the Pančevo - Novi Sad and Pančevo - Smederevo routes, would be reduced to a minimum.

Solving the existing problems of the railway infrastructure through the construction of new or reconstruction of existing railway tracks and increasing the axle load-carrying capacity, would enable the possibility of transporting larger oil products quantities by railway, both for import and export, which would significantly improve the security of supply of the Serbian market with these energy products.
7. REFERENCES

[9] Electricity Distribution Grid Code, Official Gazette of the RS, no. 71/17

[22] Regulation on limit values of air emissions from combustion plants, Official Gazette of the RS, no. 6/2016

[33] Transmission Network Code, Public Enterprise Srbijagas Novi Sad, Official Gazette of the RS, no. 74/13

[39] Public Accessible Data on Internet Network

[40] Law on Commodity Reserves was adopted, Official Gazette of the RS, no. 104/2013

[41] Council Directive 2009/119/EC of 14 September, 2009 imposing an obligation on Member States to maintain minimum stocks of crude oil and/or oil derivatives

[42] Regulation on Technical and other Requirements for Liquid Fuels of Petroleum Origin, Official Gazette of the RS, no. 123/2012
Security of Supply Statement – Republic of Serbia

[46] Regulation on Marking of Petroleum Products, Official Gazette of the RS, no. 51/2015 and 5/2017

[47] Environment Impact Assessment Study for the Project of Slop Treatment Unit, Process Project Engineering, 2014

[50] Rulebook on Technical Conditions for Undisturbed and Safe Transport through oil and petroleum products pipelines, Official Gazette of the RS, no. 37/2013

[52] Transnafta Transport System Operation Rulebook

[53] Rulebook on Types of Criteria that is Required Verification and Intervals of their Periodic Verification, Official Gazette of the RS, no. 49/2010, 110/2013

[54] Law on Amendments to the Law on Navigation and Ports on Inland Waters, Official Gazette of RS, no. 73/10, 121/12, 18/15, 96/15 - other, 92/16, 104/16 - other, 113/17 - other and 41/18

[56] Act on the amount, mode of calculation, payment and disposal of the fee for forming and maintenance of compulsory stocks of crude oil and petroleum products, Official Gazette of the RS, no. 108/2014