

STUDY ON THE 70% TARGET FOR ELECTRICITY INTERCONNECTION CAPACITIES TO BE MADE AVAILABLE TO MARKET PARTICIPANTS

- 2nd workshop -

26 September 2023

Content

- 1. Project in brief
- 2. Legislative framework
- 3. Calculation methodology and input data
- 4. MACZT results for selected scenarios in 2021
- 5. MACZT results for selected scenarios in 2028
- 6. Identification of structural congestions
- 7. Proposal of activities and measures

PROJECT IN BRIEF

Study objectives

- 1. Address forthcoming **obligations** by the EnC CPs pursuant to the Electricity Regulation (2019/943)
- 2. Estimate the **existing situation** in each WB6 CP related to the 70% target

- 4. Analyze and reflect on the 70% target in cases of perspective application of **flow-based and NTC-based capacity calculation and allocation through market coupling**
- 5. Demonstrate the effect of applying the **flow-based capacity** calculation
- 6. Suggest, based on the calculations, **activities and measures** in the EnC CPs (except Georgia) as a basis for possible action plans to fulfil the 70 % target by **2028**

Study main purpose

to support and educate TSOs, NRAs and Ministries in the CPs

to provide in-depth understanding of the legal framework and calculation background governing the implementation of the 70% target

Study calculation results and findings are not binding to any stakeholder

- Work plan

Task	Start date	End date
Project commences	Wed 11/1/23	Wed 11/1/23
Methodology, work plan, data set definition (Inception report)	Wed 11/1/23	Fri 20/1/23
Provisions: Regulation (EU) 2019/943 and ACER recommendations	Mon 23/1/23	Fri 3/2/23
Analysis of the existing situation in each WB6 Contracting Party that is related to the 70% target	Mon 6/2/23	Fri 5/5/23
Workshop 1: explanation of 70% target and the existing situation on observed cross-zonal borders	Mon 15/5/23	Mon 15/5/23
Identification of the structural congestions	Thu 16/5/23	Fri 16/6/23
NTC and Flow-based calculation comparison for existing situation	Mon 6/2/23	Fri 16/6/23
Activities and measures in the EnC CPs to fulfil the 70 % target until 2028	Fri 16/5/23	Thu 31/8/23
Draft Report	Fri 16/6/23	Tue 19/9/23
Workshop 2: summarize the whole study, activities and measures in each EnC CP to satisfy 70% target until 1 January 2028	Tue 26/9/23	Tue 26/9/23
Final Report submission	Fri 13/10/23	Fri 13/10/23
		·

Study in brief

Study on the 70% target for electricity interconnection capacities to be made available to market participants Draft report

HP

The study consists of:

- 15 chapters written on
- 211 pages with
- 90 figures and
- 96 tables
- 67 literature references used

In addition, link to detailed results with:

- 16 excel files
- ~1500 figures
- 4,6 million numerical results

Study in brief

Study on the 70% target for electricity interconnection capacities to be made available to market participants Draft report

Levergy Communit

Analysis was done:

- \circ per each Contracting Party
- per each internal network element
 400 kV and 220 kV
- per each border between EnC CPs including those to EU MSs

Geographical scope: 8 power systems

As defined in the latest EnC MC decision and agreed in the Inception report:

- 1. Capacity Calculation Region **Shadow South-East Europe** (Shadow SEE CCR), shall include the bidding zone borders between WB6 CPs and borders to the neighboring EU countries
- 2.Capacity Calculation Region **Eastern Europe** (EE CCR) shall include the bidding zone border between Ukraine and Moldova and borders to the neighboring EU countries

RELEVANT LEGISLATIVE FRAMEWORK

Motivation

Clean energy for all Europeans package

Energy performance of buildings	19. 6. 2018.
Energy performance of buildings	(EU) 2018/844
Promotion of the use of energy	21. 12. 2018.
from renewable sources	(EU) 2018/2001
Energy officiency	21. 12. 2018.
Energy efficiency	(EU) 2018/2002
Governance of the Energy	21. 12. 2018.
Union and Climate Action	(EU) 2018/1999
Internal market for electricity	19. 6. 2019.
Internal market for electricity	(EU) 2019/943
Common rules for the internal	19. 6. 2019.
market for electricity	(EU) 2019/944
Risk-preparedness in the	19. 6. 2019.
electricity sector	(EU) 2019/941
Establishing a European Union	19. 6. 2019.
Agency for the Cooperation of	(EU) 2019/942
Energy Regulators	

Article 16.8:

- TSO shall not limit the volume of interconnection capacity to be made available to market participants
- Minimum level of available capacity for crosszonal should be 70 % both for:
 - borders using a coordinated net transmission capacity approach and
 - borders using a flow-based approach
- Incorporated and adapted by the EnC Ministerial Council Decision D/2022/03/MC-EnC of 15 Dec 2022

Implementation

Key documents

- **Regulation (EU) 2015/1222:** Guideline on capacity allocation and congestion management (CACM)
 - Chapter 1: Capacity calculation (CCR, CGM, FB CCM, GSK, BZ, ...)
- ACER Recommendation No 01/2019 on the implementation of the minimum margin available for cross-zonal trade pursuant to Article 16(8) of Regulation (EU) 2019/943
- ACER Decision on Core CCM
 - Day-ahead CCM of the Core capacity calculation region
 - Intraday CCM of the Core capacity calculation region
 - Long-term CCM of the Core capacity calculation region
- ENTSO-E, Generation and load shift key implementation guide
- Numerous of workshops: ACER, JAO, ...

EIHP

Implementation

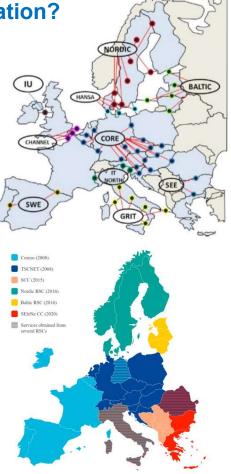
Legal framework in CPs

 Energy Community Ministerial Council Decision 2022/02/MC-EnC, adopted the 2030 energy and climate targets on 15 December 2022

Other supporting documents

- ENTSO-E
 - Bidding Zone Review
 - Technical comments on ACER's 'Report on the result of monitoring the MACZT
- The Nordic TSOs: Supporting document for the Nordic Capacity Calculation Region's proposal for capacity calculation methodology
- T. Schittekatte, et al: The EU Electricity Network Codes
- J. Hentschel, et al: A comparison of different ways to implement the 70 percent rule

74	-	
	14 / 14 7 / 17 / 1	\equiv
1/7		_
		=


Before calculation

What should be done before capacity calculation and MACZT estimation?

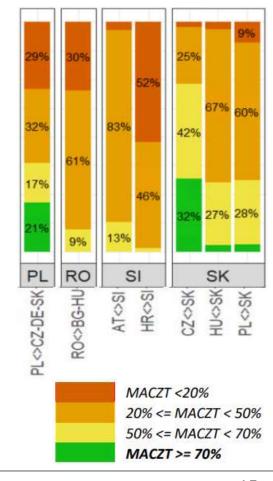
- 1. Establishing Capacity Calculation Regions (CCR) and Regional Coordination Centre (RCC)
 - CCRs are the key architecture of the EU Internal Electricity Market
 - CCRs consist of Biding Zones (BZ) borders
 - Shadow SEE and UA/MD BZ borders

2. Calculation methodology

- ENTSO-E: All TSOs' proposal for a CGM methodology in accordance with CACM – guideline on capacity allocation (2016)
- EnCS: TSOs' proposal of coordinated capacity calculation methodology for the day-ahead market timeframe (2018)
- ACER paper on estimating the margin available for crosszonal trade (December 2020)

Calculation and results interpretation

... 70 % target estimation


3. Calculation methodology basic components

- Grid model, BZ border identification
- List of Critical Network Element and Contingency CNE(C)
- Equivalent generation and load represented by Generation Shift Key (GSK)
- DC power flow and Power Transfer Distribution Factors (PTDF) calculation
- Minimum capacity margin available for cross-zonal trade (MACZT) calculation

4. Results interpretation

• For each CNE(C) and BZ

EU MS implementation status

100 7% 100 9% 8% 8% 90 90 35% 80-80 22% 18% 46% 70 41% 70-36% % of hours 60 10% 60-24% 50 % of hours 50 15% 40 40 30 66% 22% 14% 30 39% 41% 20 42% 20-10 25% 10-0 RO 9% HR HU 6% 0. HR>SI HU>AT HU>RO-HU>SK-BG-HU>RO HR>HU RO>BG-HU HR>HU SI>HR AT>HU SK>HU BG>RO BG>GR GR>BG BG-RS>RO RO>BG-RS GR RO MACZT ≥ 70% 50% ≤ MACZT < 70% 20% ≤ MACZT < 50% MACZT <20% No information on the limiting element in the Member State Failure in the capacity calculation process

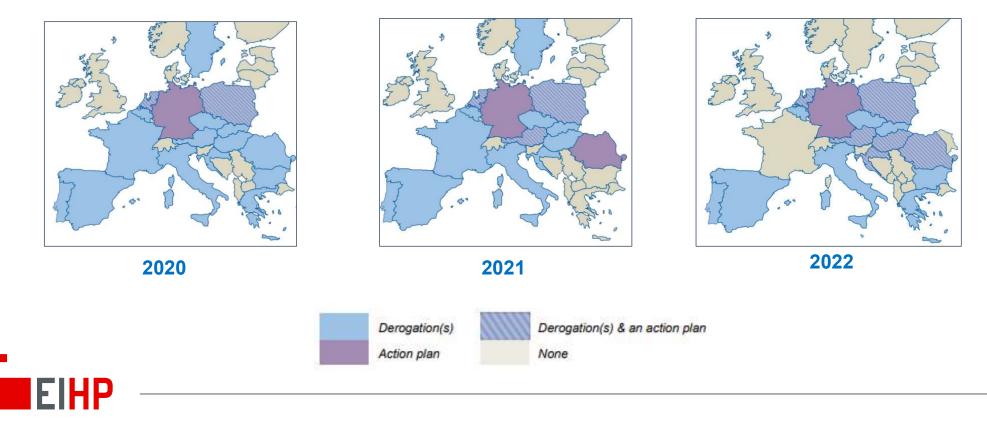
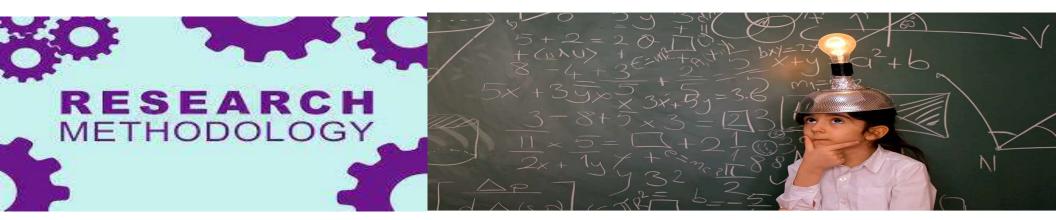
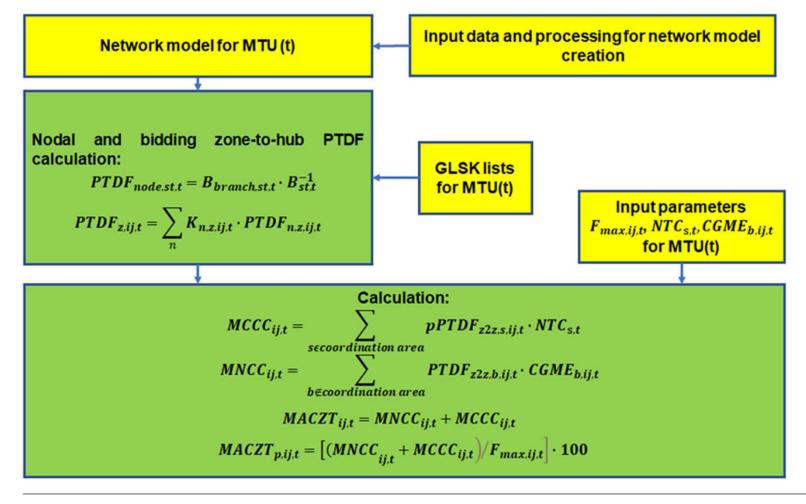

Most of EU MSs not fulfilling 70% target

Figure 5 Percentage of hours when the minimum 70% target was reached per bidding zone border in 2022 considering third <u>countries</u>

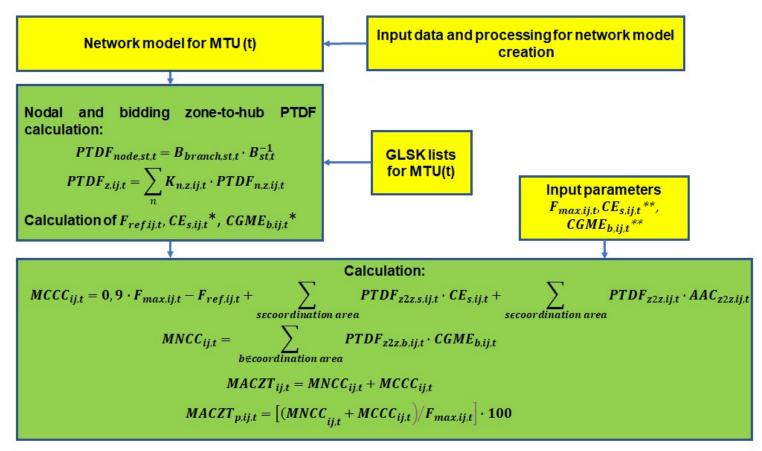
EU MS implementation status


• In 2020, 2021 and 2022 most of EU MSs asked NRA for derogation or accepted Action Plan

CALCULATION METHODOLOGY


Calculation methodology

- **1. Approved** by EnCS in the Inception Report
- **2. Discussed in detail, clarified and agreed** with ACER during the 1st workshop in May 2023
- **3. Verified:** basic numerical indicators (PTDFs, RAM, MCCC, MNCC) calculated and compared with corresponding values published on the Joint Allocation Office (JAO) platform



MACZT calculation – NTC approach

MACZT calculation – FB approach

*only regimes for 3rd Wednesday 2028 at 19:30 **only regimes for 3rd Wednesday 2021 at 19:30

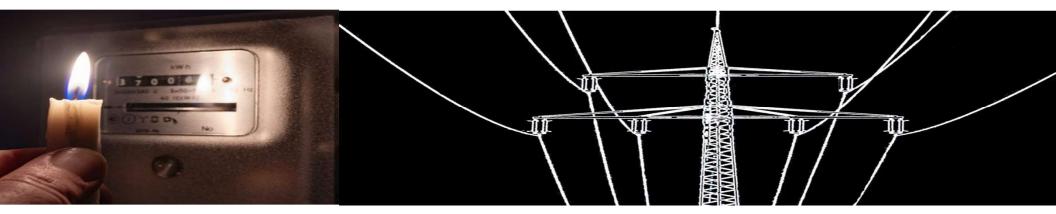
Main steps in the MACZT calculation

Contracting party	Total number of modeled elements	Total number of considered elements (basis for CNE(C) list)	Total number of CNE(C) candidates (element+ contingency +direction)	
Albania	69	24	2502	
BiH	105	34	3492	
Kosovo*	44	20	1198	
Montenegro	32	23	1052	
North Macedonia	19	19	704	
Serbia	179	56	11050	
Ukraine	425	66	52328	
Moldova 22		17	872	
TOTAL	895	259	73198	

3) Definition of CNE(C) list

In this study all network elements (OHL, TR) were analyzed along with all contingencies

In total there were **~73000 CNE(C) candidates**. Finally, 259 considered elements analyzed


Follow-up studies can use already selected CNEC(C) and skip the calculation for all candidates

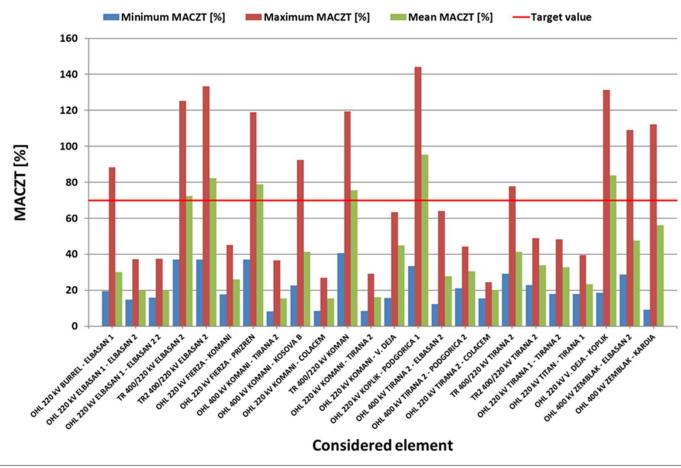
INPUT DATA

Input data set

- Defined in the ToR and Inception Report
- Power system model for 2021 and 2028
- TSO questionnaire
- Two characteristic network model snapshots for 2021: 3rd
 Wednesday in January and 3rd Wednesday in July: 20 Jan
 2021, 19:30 h, 21 July 2021, 19:30 h
- Two characteristic network model snapshots for 2028: 3rd
 Wednesday in January and 3rd Wednesday in July: 19 Jan
 2028, 19:30 h, 19 July 2028, 19:30 h
- Hourly snapshots in 3-year timeframe (2020, 2021, 2022)

Input data set for 2028

- WB6 network modeled as planned in network developments plans with support of SECI PSS models
- Ukrainian network modeled as fully recovered, with addition of OHL 400 kV Khmelnytskyi (UA) – Rzeszów (PL), previously operating on 750 kV
- Moldovan network modeled as existing with one new internal element - OHL 400 kV Vulcănești – Chisinau



MACZT results in the existing network (2021)

Example: ALBANIA – Jan 2021 - NTC

MACZT calculation results for all considered elements in Albania with NTC approach for 20 Jan 2021, 19:30 h

24 elements considered

• 0 elements with MACZT>70%

Individual characteristic MACZT values are:

- MINIMUM: 8 % 40 %
- AVERAGE: 14 % 95 %
- MAXIMUM: 22 % 143 %

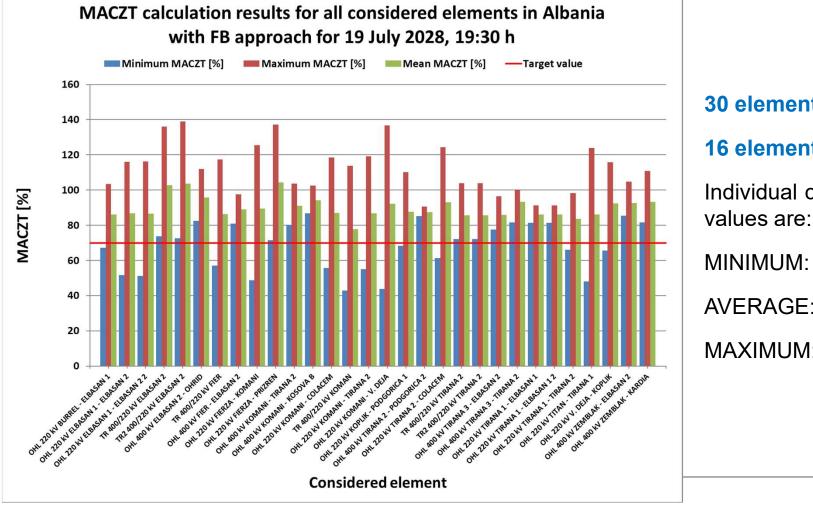

Example: ALBANIA – July 2021 - NTC

Table 20 List of calculated minimum MACZT values below 20% for considered element on 21 July 2021 at 19:30 h with NTC approach in <u>Albania</u>

Wors	Minimum	
Element	MACZT [%]	
OHL 400 kV ZEMBLAK – KARDIA (GR)	DIRECT OHL 400 kV ZEMBLAK - ELBASAN 2	10,0
OHL 400 kV KOMANI - TIRANA 2	OPPOSITE TR 400/220 kV ELBASAN 2	10,4
OHL 400 kV TIRANA 2 - ELBASAN 2	OPPOSITE OHL 400.0 kV TIRANA 2 - PODGORICA 2 (ME)	13,0
OHL 220 kV ELBASAN 1 - ELBASAN 2	DIRECT OHL 400.0 kV ZEMLAK – KARDIA (GR)	15,5
OHL 220 kV ELBASAN 1 - ELBASAN 2 2	DIRECT OHL 400.0 kV ZEMLAK – KARDIA (GR)	16,6
OHL 220 kV TIRANA 2 - COLACEM	DIRECT OHL 220 kV BURREL - ELBASAN 1	17,6
OHL 220 kV KOMANI - COLACEM	OPPOSITE OHL 220 kV BURREL - ELBASAN 1	17,7
OHL 220 kV KOMANI - TIRANA 2	OPPOSITE OHL 220 kV BURREL - ELBASAN 1	19,0

Example: ALBANIA – July 2028 - FB

30 elements considered

16 elements with MACZT>70%

Individual characteristic MACZT values are:

MINIMUM: **42 % - 85 %**

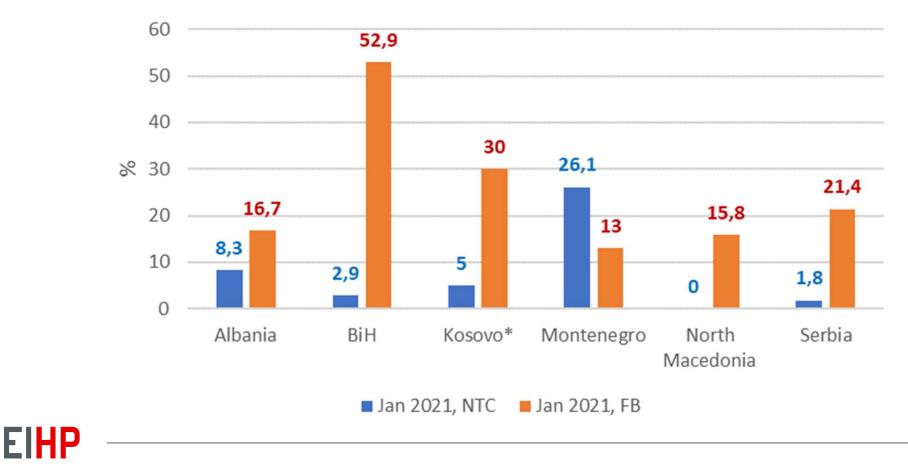
AVERAGE: 78 % - 102 %

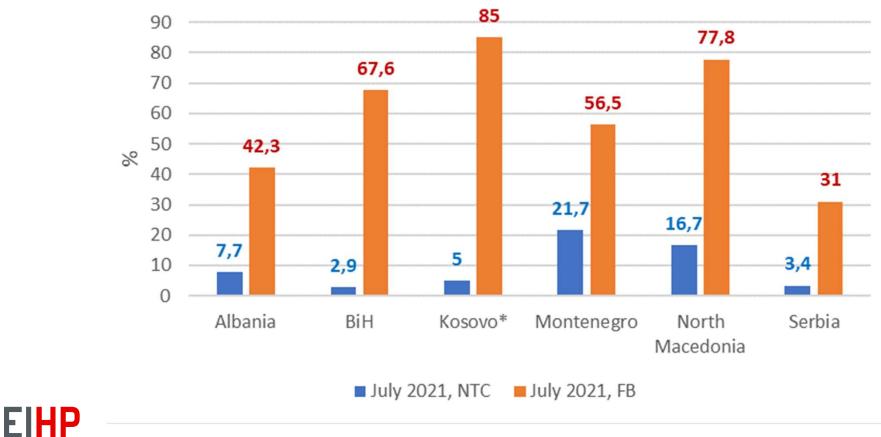
MAXIMUM: 90 % - 138 %

Example: ALBANIA – July 2028 - FB

List of calculated minimum MACZT values below 70% for considered element on 19 July 2028 at 19:30 h with **FB approach in Albania**

Wors	Minimum MACZT	
Element	Element Direction and contingency	
TR 400/220 kV KOMAN	DIRECT OHL 220 kV FIERZA - PRIZREN	42,9
OHL 220 kV KOMANI - V. DEJA	DIRECT TR 400/220 kV KOMAN	43,9
OHL 220 kV TITAN - TIRANA 1	DIRECT OHL 220 kV FIERZA - KOMANI	48,2
OHL 220 kV FIERZA - KOMANI	DIRECT OHL 220 kV TITAN - TIRANA 1	48,8
OHL 220 kV ELBASAN 1 - ELBASAN 2 2	OPPOSITE OHL 220 kV ELBASAN 1 - ELBASAN 2	51,3
OHL 220 kV ELBASAN 1 - ELBASAN 2	OPPOSITE OHL 220 kV ELBASAN 1 - ELBASAN 2 2	51,6
OHL 220 kV KOMANI - TIRANA 2	DIRECT OHL 220 kV KOMANI - COLACEM	55,1
OHL 220 kV KOMANI - COLACEM	DIRECT OHL 220 kV KOMANI - TIRANA 2	55,7
TR 400/220 kV FIER	OPPOSITE OHL 400 kV TIRANA 3 - ELBASAN 2	57,1
OHL 220 kV TIRANA 2 - COLACEM	OPPOSITE OHL 220 kV KOMANI - V. DEJA	61,5
OHL 220 kV V. DEJA - KOPLIK	DIRECT TR 400/220 kV KOMAN	65,7
OHL 220 kV TIRANA 1 - TIRANA 2	DIRECT OHL 220 kV KOMANI - TIRANA 2	66,2
OHL 220 kV BURREL - ELBASAN 1	DIRECT OHL 220 kV TITAN - TIRANA 1	67,2
OHL 220 kV KOPLIK - PODGORICA 1	OPPOSITE OHL 220 kV ELBASAN 1 - KURUM	68,3




		Total	Total	Total number	Jan 2021		July 2021	
	Contracting party	number of modeled elements	number of considered elements (basis for CNE(C) list)	of CNE(C) candidates (element+ contingency +direction)	NTC - Total number of elements with MACZT<70%	FB - Total number of elements with MACZT<70%	NTC - Total number of elements with MACZT<70%	FB - Total number of elements with MACZT<70%
	Albania	69	24	2502	22	20	24	15
	BiH	105	34	3492	33	16	33	11
	Kosovo*	44	20	1198	19	14	19	3
	Montenegro	32	23	1052	17	20	18	10
	North Macedonia	19	19	704	19	16	15	4
	Serbia	179	56	11050	55	44	56	40
l	TOTAL	448	176	19998	165	130	165	83
EI	HP —							3

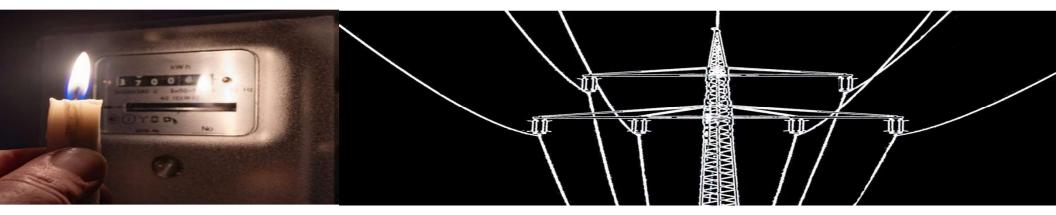
20 January 2021, 19:30 h			21 July 2021, 19:30 h		
Contracting party	Share of elements with MACZT>70% NTC	Share of elements with MACZT>70% FB	Contracting party	Share of elements with MACZT>70% NTC	Share of elements with MACZT>70% FB
Albania	8,3	16,7	Albania	7,7	42,3
BiH	2,9	52,9	BiH	2,9	67,6
Kosovo*	5,0	30,0	Kosovo*	5,0	85,0
Montenegro	26,1	13,0	Montenegro	21,7	56,5
North Macedonia	0,0	15,8	North Macedonia	16,7	77,8
Serbia	1,8	21,4	Serbia	3,4	31,0
TOTAL	6,3	26,1	TOTAL	7,8	53,6

Share of elements with MACZT>70%

Share of elements with MACZT>70%

Comparison between NTC and FB approach

- 1. Comparison based on two characteristic regimes
- 2. Existing (bilateral) NTC approach and FB approach are compared
- **3. Evident positive effect of FB** approach detected in this case, but NRAs are in charge to decide on the most appropriate approach
- 4. Switching from the NTC to FB approach in the EnC CPs would be a complex and time-consuming process
- 5. This study primarily serves as an **educational showcase**, rather than an explicit proof in decision-making process
- 6. As a **follow-up** to this study it is suggested to perform **additional studies** on optimal network configuration using adequate measures to maximize MACZT on bidding zone borders



35

MACZT results in the future network (2028)

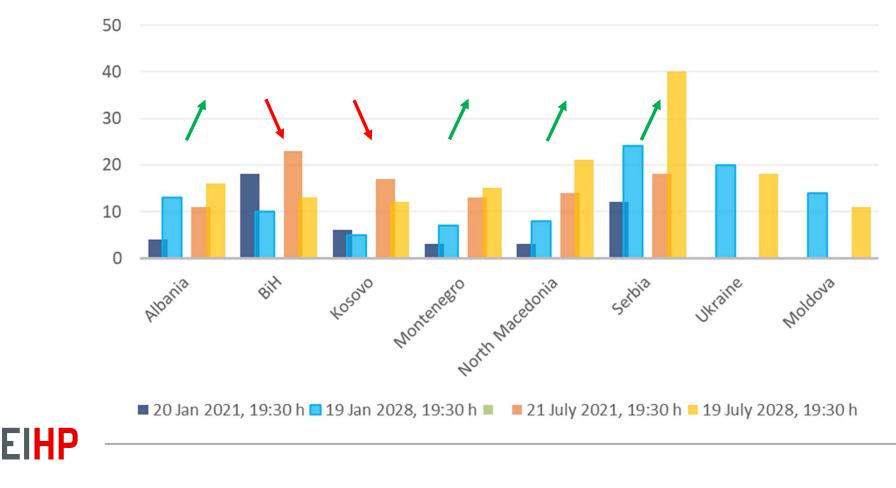
Results comparison 2021 vs 2028 – FB approach

	20 Jan <mark>2021</mark> , 19:30 h		19 Jan 20	28, 19:30 h
Contracting party	Total number of considered elements	Total number of elements with MACZT>70%	Total number of considered elements	Total number of elements with MACZT>70%
Albania	24	4	33	13
BiH	34	18	27	10
Kosovo	20	6	22	5
Montenegro	23	3	23	7
North Macedonia	19	3	22	8
Serbia	56	12	54	24
Ukraine	1	27	66	20
Moldova	-	-	17	14
TOTAL	176	46	264	101

FIHL

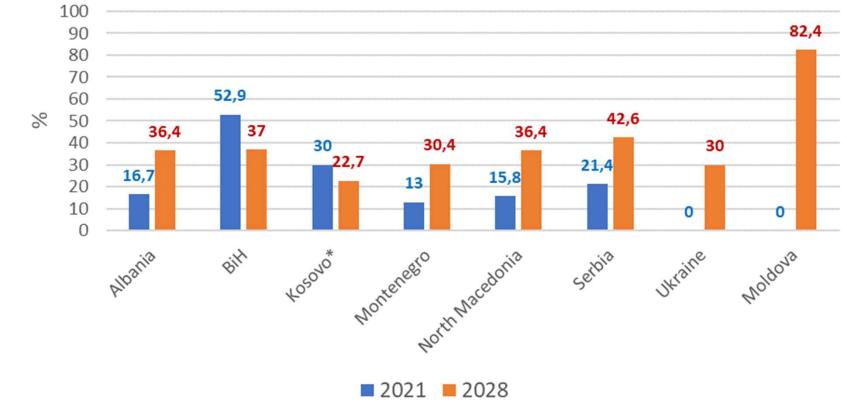
Contracting party	Share of elements with MACZT>70% on 20 Jan 2021, 19:30 h	Share of elements with MACZT>70% on 19 Jan 2028 at 19:30 h
Albania	16,7	36,4
BiH	52,9	37
Kosovo*	30	22,7
Montenegro	13	30,4
North Macedonia	15,8	36,4
Serbia	21,4	42,6
TOTAL WB6	26,1	39,4
Ukraine	-	30
Moldova	-	82,4
TOTAL UA/MD	-	40,9

37


Results comparison 2021 vs 2028 – FB approach

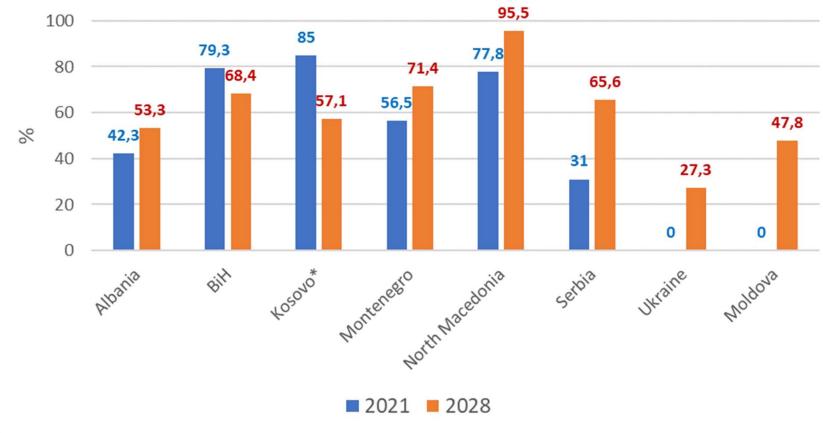
	21 July 2021, 19:30 h		19 July 20	28, 19:30 h
Contracting party	Total number of considered elements	Total number of elements with MACZT>70%	Total number of considered elements	Total number of elements with MACZT>70%
Albania	26	11	30	16
BiH	29	23	19	13
Kosovo*	20	17	21	12
Montenegro	23	13	21	15
North Macedonia	18	14	22	21
Serbia	58	18	61	40
Ukraine			66	18
Moldova			23	11
TOTAL	174	96	263	146
F	HP -			

Contracting party	Share of elements with MACZT>70% on 21 July 2021, 19:30 h	Share of elements with MACZT>70% on 19 July 2028 at 19:30 h
Albania	42,3	53,3
BiH	79,3	68,4
Kosovo*	85	57,1
Montenegro	56,5	71,4
North Macedonia	77,8	95,5
Serbia	31	65,6
TOTAL WB6	55,2	67,2
Ukraine	-	27,3
Moldova	-	47,8
TOTAL UA/MD		32,5


Results comparison 2021 vs 2028

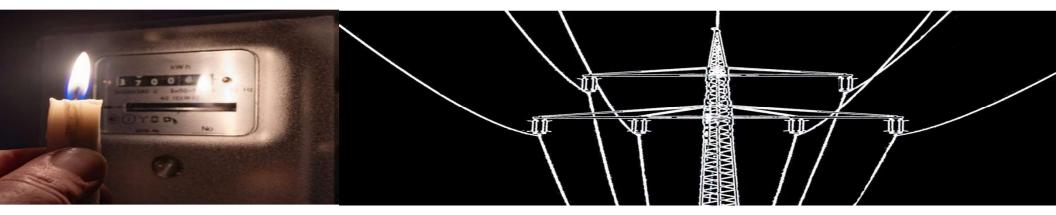
Total number of elements with MACZT>70%

Results comparison 2021 vs 2028


Share of elements with MACZT>70% on January scenarios with FB approach

Results comparison 2021 vs 2028

Share of elements with MACZT>70% on July scenarios with FB approach

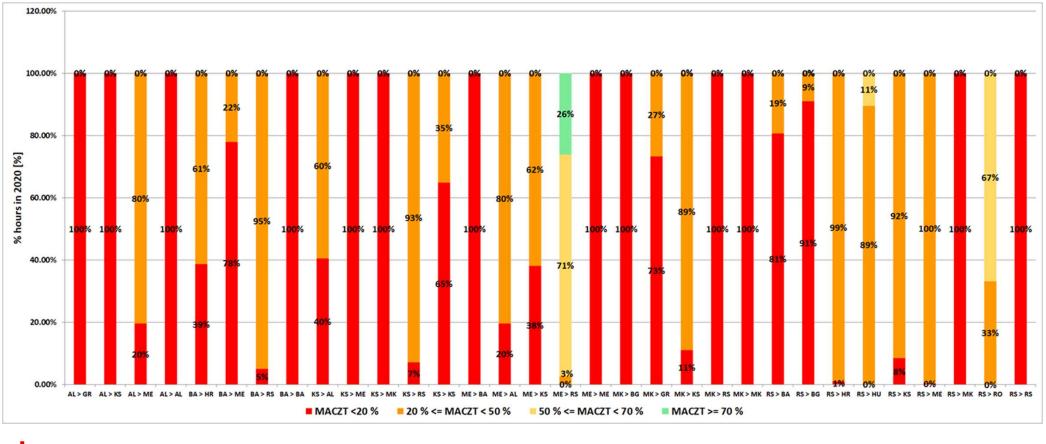


IDENTIFICATION OF STRUCTURAL CONGESTIONS

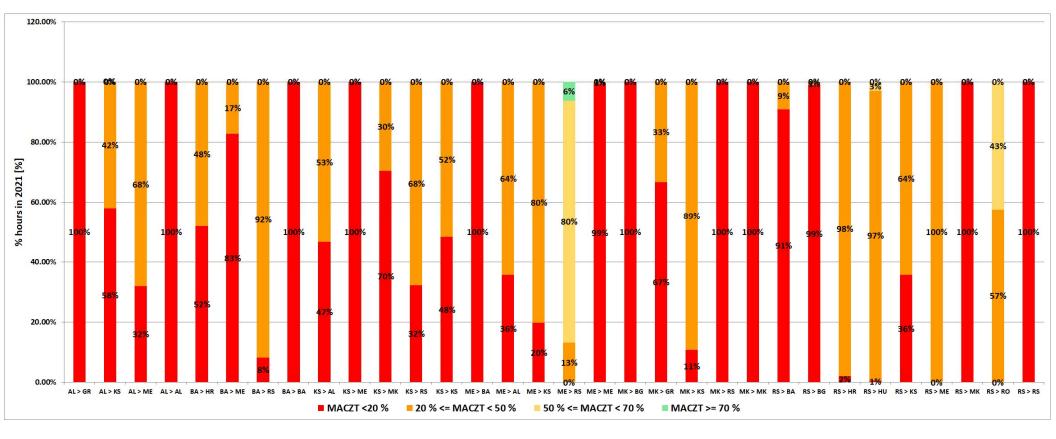
Definition

The main criterion for structural congestion is based on the EU best practices as follows:

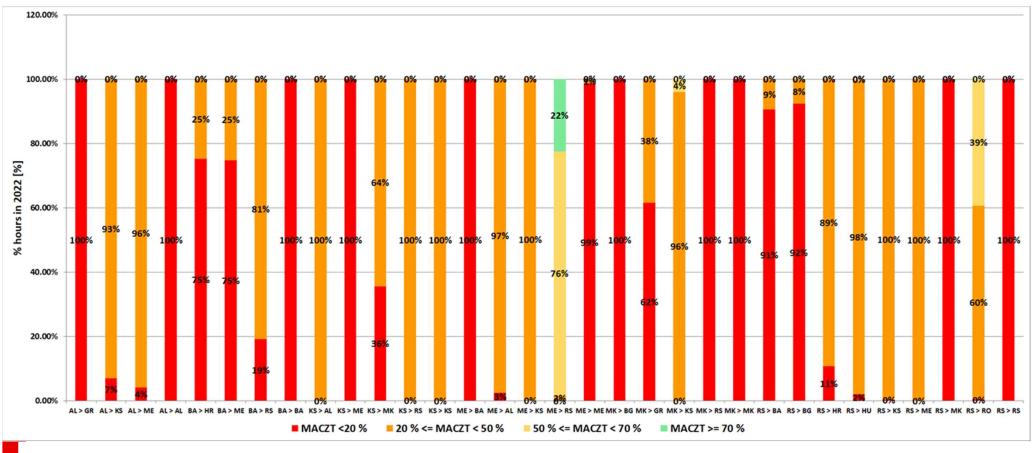
Elements with more than 5% of hours during the year with MACZT<70% are considered as elements with structural congestion.


Basic methodology details

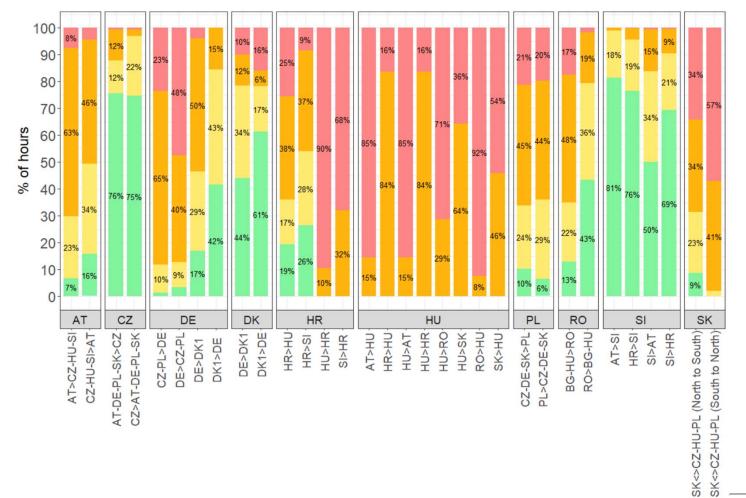
- 3-year timeframe analyzed (**2020, 2021 and 2022**) on hourly basis
- for every single considered element
- NTC approach used
- 4 625 280 results in total
- Results given per each border and internal network
- Results grouped in 4 MACZT ranges:
 - a) MACZT < 20%
 - b) $20\% \leq MACZT < 50\%$
 - c) $50\% \leq MACZT < 70\%$
 - d) MACZT ≥ 70%



% of time with MACZT intervals in 2020

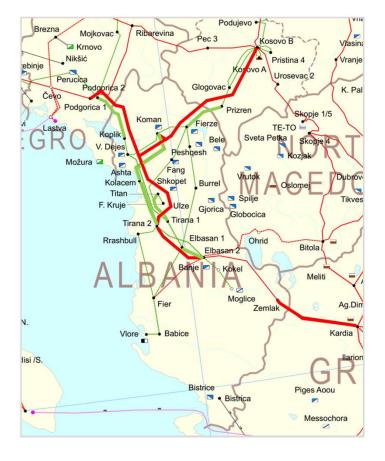


% of time with MACZT intervals in 2021



% of time with MACZT intervals in 2022

% of time with MACZT intervals in 2022 in EU



EIHP

Structural congestions in Albania

No	Structural congestion elements in Albania			
	400 kV			
1	OHL 400 kV ZEMBLAK - KARDIA (GR)			
2	OHL 400 kV KOMANI - KOSOVA B (KS)			
3	OHL 400 kV TIRANA 2 - PODGORICA 2 (ME)			
4	OHL 400 kV TIRANA 2 - ELBASAN 2			
5	OHL 400 kV KOMANI - TIRANA 2			
	220 kV			
6	OHL 220 kV ELBASAN 1 - ELBASAN 2			
7	OHL 220 kV TIRANA 2 – COLACEM			
8	OHL 220 kV KOMANI – COLACEM			
9	OHL 220 kV ELBASAN 1 - ELBASAN 2 2			
10	OHL 220 kV TITAN - TIRANA 1			
11	OHL 220 kV KOPLIK - PODGORICA 1 (ME)			
12	OHL 220 kV FIERZA – PRIZREN (KS)			

EIHP

49

Structural congestions in **BiH**

No	Structural congestion elements in BiH		
400 kV			
1	OHL 400 kV MOSTAR 4 – KONJSKO (HR)		
2	OHL 400 kV TPP UGLJEVIK – ERNESTINOVO (HR)		
3	OHL 400 kV TREBINJE – LASTVA (ME)		
4	OHL 400 kV TPP UGLJEVIK - S. MITROVICA 2 (RS)		
5	OHL 400 kV TPP GACKO - MOSTAR 4		
6	OHL 400 kV TPP GACKO – TREBINJE		
7	OHL 400 kV VISEGRAD - TUZLA 4		
8	OHL 400 kV SARAJEVO 20 - SARAJEVO 10		
9	OHL 400 kV SARAJEVO 10 - TUZLA 4		
10	OHL 400 kV SARAJEVO 10 - MOSTAR 4		
	220 kV		
11	OHL 220 kV SARAJEVO 20 - PIVA (ME)		
12	OHL 220 kV VISEGRAD - VALJEVO (RS)		
EIH	Ρ		

Structural congestions in Kosovo*

No	Structural congestion elements in Kosovo*		
400 kV			
1	OHL 400 kV TPP KOSOVA B - KRAGUJEVAC 2 (RS)		
2	OHL 400 kV PEJA 3 - RIBAREVINE (ME)		
3	OHL 400 kV FERIZAJ 2 - SKOPJE 5 (MK)		
4	OHL 400 kV TPP KOSOVA B - NIS 2 (RS)		
	220 kV		
5	OHL 220 kV DRENAS 1 - TPP KOSOVA B		
6	OHL 220 kV PRIZREN 2 – FIERZA (AL)		
7	OHL 220 kV PODUJEVA - KRUSEVAC 1 (RS)		

Structural congestions in Montenegro

Νο	Structural congestion elements in Montenegro	
	400 kV	
1	OHL 400 kV PODGORICA 2 - TIRANA 2 (AL)	
2	OHL 400 kV LASTVA - TREBINJE (BIH)	
3	OHL 400 kV RIBAREVINE - PEJA 3 (KS)	
4	OHL 400 kV LASTVA - PODGORICA 2	
5	OHL 400 kV RIBAREVINE - PODGORICA 2	
	220 kV	
6	OHL 220 kV TPP PLJEVLJA - BAJINA BASTA (RS)	
7	OHL 220 kV TPP PLJEVLJA - BISTRICA (RS)	
8	OHL 220 kV HPP PERUCICA - TREBINJE (BIH)	
9	OHL 220 kV HPP PIVA - SARAJEVO (BIH)	
10	OHL 220 kV PODGORICA 1 - V. DEJA (AL)	

Structural congestions in N. Macedonia

No	Structural congestion elements in N.Macedonia				
	400 kV				
1	OHL 400 kV STIP - C. MOGILA (BG)				
2	OHL 400 kV BITOLA - LARISA (GR)				
3	OHL 400 kV DUBROVO - THESSALONIKI (GR)				
4	OHL 400 kV SKOPJE 5 - FERIZAJ 2 (KS)				
5	OHL 400 kV BITOLA - SKOPJE 4				
6	OHL 400 kV DUBROVO - SKOPJE 4				
7	OHL 400 kV STIP - VRANJE 4 (RS)				
8	OHL 400 kV BITOLA - DUBROVO				
220 kV					

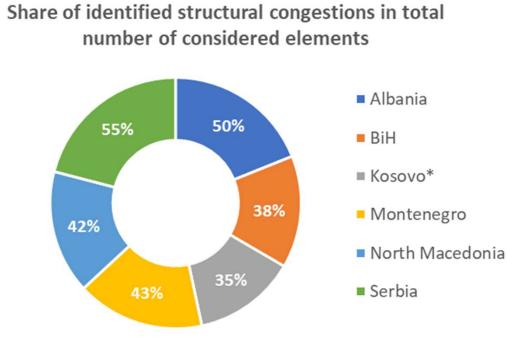
Structural congestions in Serbia

No	Structural congestion elements in Serbia				
	400 kV				
1	OHL 400 kV S. MITROVICA 2 - UGLIEVIK (BIH)				
2	OHL 400 kV NIS 2 - SOFIA (BG)				
3	OHL 400 kV S. MITROVICA - ERNESTINOVO (HR)				
4	OHL 400 kV SUBOTICA 3 - SANDORFALVA (HU)				
5	OHL 400 kV NIS 2 - KOSOVA B (KS)				
6	OHL 400 kV VRANJE 4 - STIP (MK)				
7	OHL 400 kV HPP DJERDAP 1 - PORTILE DE FIER 1 (RO)				
8	OHL 400 kV VRANJE 4 - LESKOVAC 2				
9	OHL 400 kV KRAGUJEVAC 2 - JAGODINA 4				
10	OHL 400 kV JAGODINA 4 - NIS 2				
11	OHL 400 kV OBRENOVAC - KRAGUJEVAC 2				
12	OHL 400 kV PANCEVO 2 - BEOGRAD 20				
13	OHL 400 kV BEOGRAD 8 - BEOGRAD 20				
14	OHL 400 kV PANCEVO 2 - WPP CIBUK 1				

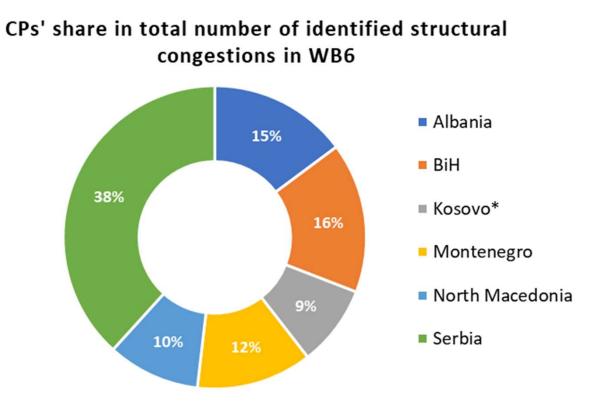
EIHP

15	OHL 400 kV WPP CIBUK 1 - DRMNO
16	OHL 400 kV SMEDEREVO 3 - DRMNO
17	OHL 400 kV SMEDEREVO 3 - BEOGRAD 8 2
18	OHL 400 kV HPP DJERDAP 1 - DRMNO
19	OHL 400 kV NIS 2 – LESKOVAC 2
20	OHL 400 kV OBRENOVAC - MLADOST
21	OHL 400 kV OBRENOVAC - MLADOST 2
22	OHL 400 kV BOR 2 - NIS 2
23	OHL 400 kV BOR 2 - HPP DJERDAP 1
24	OHL 400 kV OBRENOVAC - BEOGRAD 8
25	OHL 400 kV DRMNO - TPP DRMNO
	220 kV
26	OHL 220 kV BISTRICA - PLIEVLIA 2 (ME)
27	OHL 220 kV VARDISTE - VISEGRAD (BIH)
28	OHL 220 kV B. BASTA - VALJEVO 3
29	OHL 220 kV KRUSEVAC 1 - PODUJEVO (KS)

Structural congestions in Serbia



Structural congestions recap


Contracting party	Total number of considered elements	Total number of identified structural congestions
Albania	24	12
BiH	34	13
Kosovo*	20	7
Montenegro	23	10
North Macedonia	19	8
Serbia	56	31
TOTAL	176	81

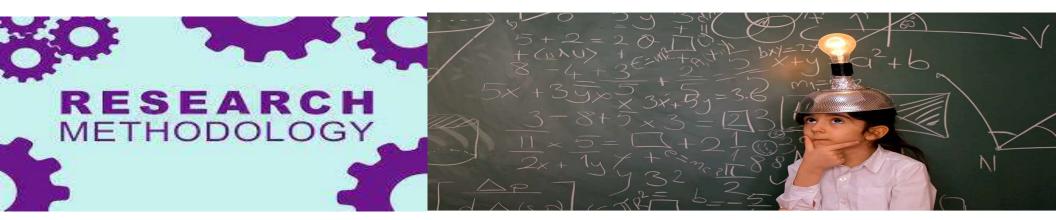
IEIHP

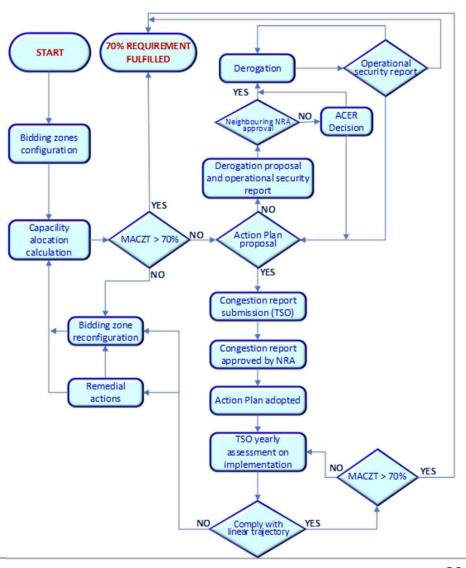
56

Structural congestions recap

Structural congestions recap

No of structural congestions	Albania	BiH	Kosovo*	Monte negro	North Macedonia	Serbia	TOTAL
400 kV	5	10	4	5	8	25	57
220 kV	7	2	3	5	0	4	21
TOTAL	12	12	7	10	8	29	78





PROPOSAL OF THE MEASURES AND ACTIVITIES

Block-diagram of 70% fulfilment process

Conclusions and takeaways

CPs have three basic options to cope with 70% target:

- 1. To prove that 70% target is fully satisfied
- 2. To request short-term derogation
- 3. To prepare and adopt Action Plan (after structural congestions are approved by relevant NRA)

Derogation

TSO may request from the NRA to grant a derogation from the 70% target fulfillment.

It has to be on foreseeable grounds for maintaining operational security. TSO has to develop and publish a methodology and projects that shall provide a long-term solution.

Before derogation, the NRA **needs to consult other NRAs** from the affected capacity calculation region.

Derogations can be granted for no more than 1-year at a time, or, up **to a max of 2 years**.

IT IS STRONGLY RECOMMENDED NOT TO USE DEROGATIONS REPETITIVELY

Action Plan

Derogation and Action Plan are 2 different processes

Action Plans are not needed for derogation decisions

In case of structural congestions (and the respective report approved in a CP), **CP needs to define Action Plan**

In practice, it is possible to have derogation in parallel with the Action Plan.

Action Plan

Action Plan

Proposed measures and activities in the Action Plan should cover the following 3 most important pillars:

- **1. Optimal techno-economic solution**, without jeopardising market liquidity
- 2. Precise adoption and implementation **schedule**
- 3. Definition of the **starting MACZT value and linear trajectory** through the implementation period in which the 70% target will be fully reached.

Action Plan

Action Plan

Action Plan general structure:

- 1. Introduction
- 2. Legal background and decision on adoption of the Action Plan
- 3. Starting point calculation results and linear trajectory
- 4. Measures to reduce structural congestions
- 5. Supervision and Action Plan implementation monitoring
- 6. Appendix concrete list of activities.

Conclusions and takeaways

- 1. MACZT values are supposed to be **calculated by each TSO** and have to be **approved by the relevant NRA**
- 2. The main purpose of this project is **to support and educate** TSOs in the CPs, with **no obligatory findings**
- 3. 70% target fulfillment seems to be very poor in the CPs
- 4. MACZT implementation is **quite challenging** task, especially for **small, well-connected systems**, like WB6
- 5. It is illustrated on the selected snapshots in 2021 and 2028

Conclusions and takeaways

- 6. No obligation to use NTC or FB approach, but the one that is more convenient and efficient. On given scenarios in WB6 **FB approach** gives much better results than bilateral NTC approach
- 7. Results for 2028 are much **better** than for 2021 due to planned network construction, but **still below 70% target**
- 8. There are **78 identified structural congestions** in WB6
- 9. Half of the structural congestions identified in internal networks, while remaining half on the cross-zonal elements
- 10. As a follow-up to this study: to perform additional studies on optimal network configuration using adequate measures to maximize MACZT values on bidding zone borders

Activities and measures

- **1. Full activation of the coordinated capacity region** in WB6 and EE, including eventual **BZ reconfiguration**
- **2. Coordinated capacity calculation** and allocation should be implemented in the whole Shadow SEE and Eastern Europe CCRs
- **3. Investments/construction of new OHLs**
- **4. Investments/reinforcement** (nominal capacity increase with conductor cross-section upgrade, HTLS technology etc.) of the existing 220 kV network should also be carefully considered
- **5. Other network capacity increase options**, including existing and new technologies (smart metering systems, dynamic thermal rating etc.)
- 6. Remedial actions (redispatching, demand side response, topology changes, energy storages, active power flow control etc.). MACZT can be improved with flow decomposition (loop flow elimination and internal flow on CZ elements)

Thank you for your attention

Contact: gmajstrovic@eihp.hr bmilesevic@eihp.hr

69