
Modelling activities related to the Austrian 100% RES electricity target for 2030

Franziska Schöniger, Gustav Resch

Technische Universität Wien (TU Wien), Energy Economics Group (EEG), Institute of Energy Systems and Electrical Drives, Renewable Energy Policy, Austria

15th Regional Exchange of Modelling Experts involved in the Development of Integrated National Energy and Climate Plans (NECP) in the WB6 | 18th May 2022

Austrian electricity targets & TUW modelling works

nergy conomics roup

"Electricity Future Austria 2030"

Assessment of prerequisites and impacts of an ambitious renewable electricity uptake in Austria

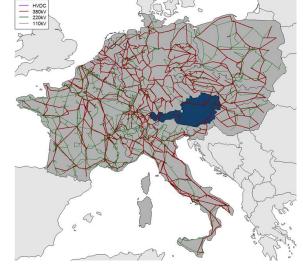
Focus

- How can the transformation towards a renewable-based electricity supply in Austria take place from a techno-economic perspective?
- > Detailed analysis (high temporal and spatial resolution)
- Energy policy framework conditions and support instruments to reach the target

The interplay of three models

1) Power System Model (Dispatch) HiREPs

Modelling of the interplay between supply & demand in the electricity and district heating sector (incl. sector coupling)


- High temporal resolution (hourly)
- 2) Power System Model EDisOn

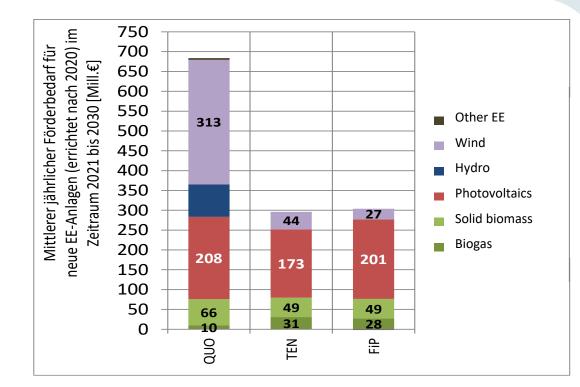
A closer look at supply security – i.e. the stability of the transmission grid

- Detailed modelling of the European transmission grid (with focus on Austria)
- 3) (Sectoral) Energy System Model Green-X

Policy analysis: Market incentives and support expenditures

Assessment of costs and benefits of support instruments

nergy conomics

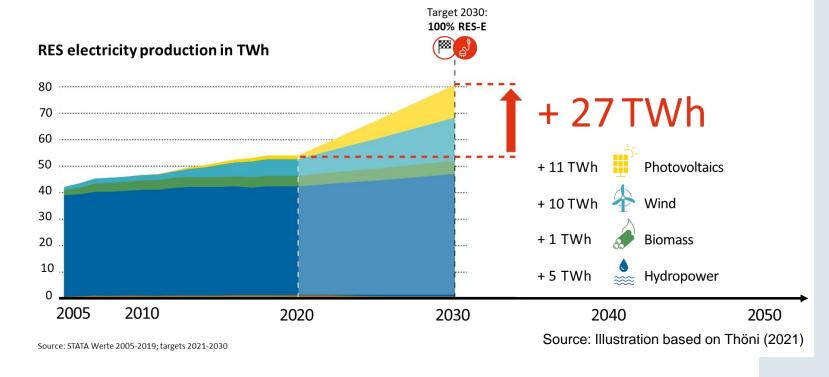

Comparison of support schemes: Assessed instruments

RES-Scenario: 3 Policy concepts

- QUO: Technology-neutral quota ("Least-Cost") – Support via <u>Green Certificates</u> → highly inefficient
- **TEN: Auctions** sliding feed-in premium system, <u>competitive</u> <u>price determination</u>

→ Advantages of auctions are offset by disadvantages due to the limitations of the domestic market

 FiP: ("Classical") Feed-in premium – sliding feed-in premium system, <u>administrative</u> price setting
 → Comparable to auctions


Average (2021-2030) annual support need for new RES-E plants (built after 2020) Source: Green-X Modell Remark: All cost are expressed in €₂₀₁₀ (real)

\rightarrow EAG: Austria introduced a FiP system (mix of auctions and administrative price setting) coming into action in 2022

RES investments and support for achieving the #mission2030 target – the required RES uptake (1)

Mission#Impact (2019) by TU Wien:

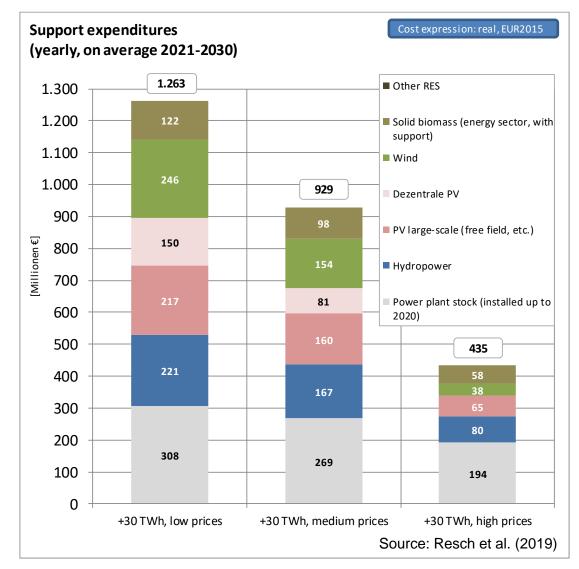
- Focus on investment & support expenditures
- Electricity demand trends: Development of electricity demand is a central parameter for RES ambition
- Assumption: positive economic development, increasing sector coupling, and increasing energy efficiency
- The required net increase in electricity generation from wind, PV and hydro is consequently ca. 30 TWh by 2030 (compared to 2016).

→ EAG (2021): Increase in annual electricity generation from renewable sources by 27 TWh by 2030 (compared to 2020)

Resch et al. (2019)

A study performed by TU Wien (Energy Economics Group), commissioned by Oesterreichs Energie.

energy conomics

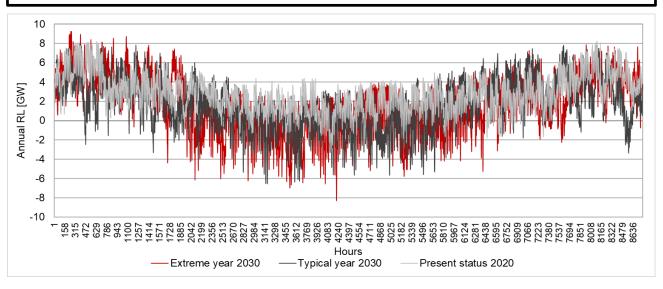

RES investments and support for achieving the #mission2030 target – Investments and support (2)

Key parameter in a sliding premium system:
 Wholesale electricity price trends

(net) support =
technology costs market value of the injected electricity into the grid

• Support expenditures range from € 0.4 to 1.3 billion per year

→ EAG (2021): 1 billion € per annum until 2030



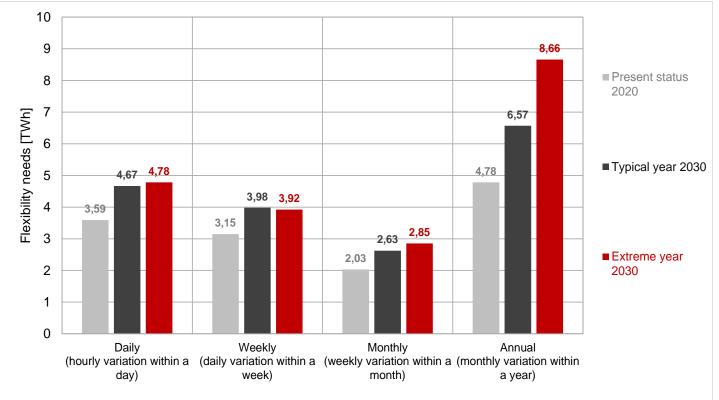
TU WIEN

- Fluctuations of high shares of hydro, wind, and solar electricity
- Rising focus: Modelling of related flexibility needs and options in high RES share energy systems

Residual load (RL) = load – non-dispatchable electricity (hydro, solar, wind)


Status quo (2020) and comparison of scenarios (2030) for the temporal development of RL in Austria

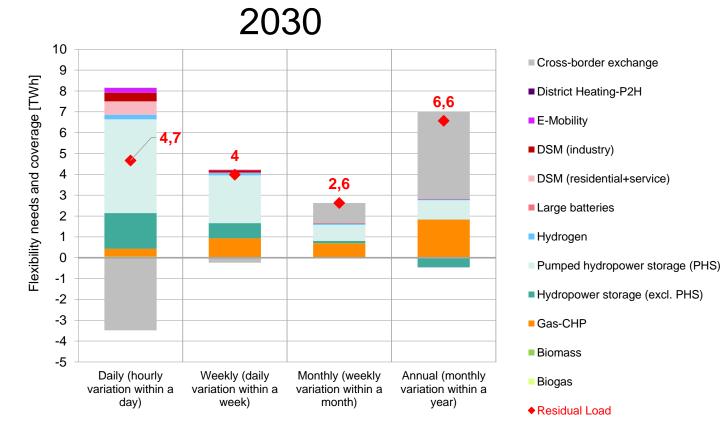
Seasonal mismatch of supply and demand


Method to analyse flexibility

 Analysis of the residual load (RL) at distinct time scales (daily, weekly, monthly, annual)

Definition of the flexibility needs to balance the monthly fluctuations within a year, exemplified based on historical generation and consumption data for Austria in 2020

Source: Suna et al. (2022) Assessment of Flexibility Needs and Options for a 100% Renewable Electricity System by 2030 in Austria.

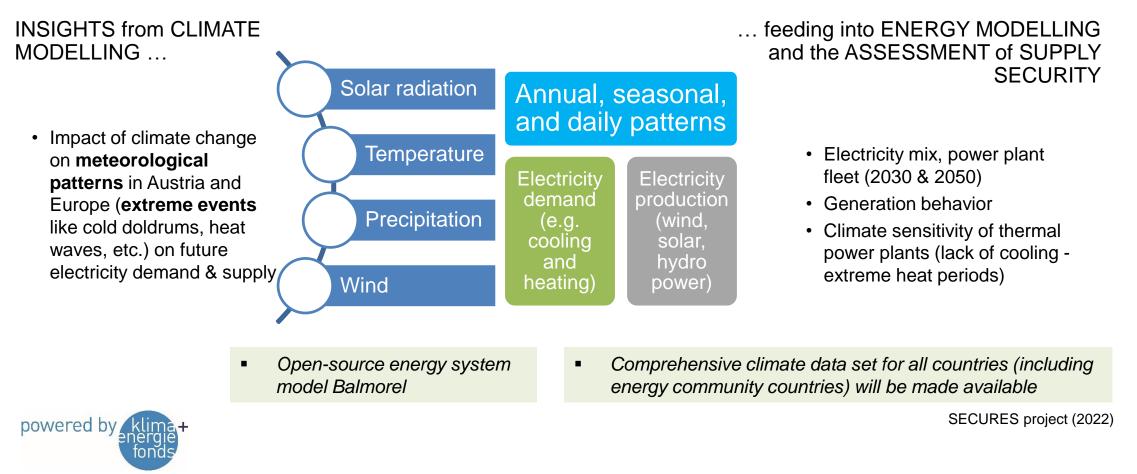


Status quo (2020) and comparison of scenarios (2030) of the temporally subdivided flexibility demand (left) (Source: Suna et al. (2022))

In the long term (i.e., the monthly fluctuations within a year), the strongest increase in flexibility demand can be observed

Contributions of different flexibility options

Contribution of flexibility options to cover flexibility needs at different time period in 2030 according to the scenario "Typical Year 2030" (Source: Suna et al. (2022))


- Hydro (pump) storage most important short-term flexibility
- Export/import most important
 long-term flexibility option

Soon available in English:

Suna et al. (2022) Assessment of Flexibility Needs and Options for a 100% Renewable Electricity System by 2030 in Austria.

Focus: Evaluating the impact of climate change on high RES share energy systems

18/05/2022

Conclusions from modelling works related to the 100% RES-E target in Austria

- Transition enablers: show the techno-economic feasibility and political will to let the vision become a REALITY
- **Demand** and **electricity price trends** are **key parameters** when determining **support needs**
- Flexibility needs and options have become increasingly the focus of energy system analysis in high RES-share scenarios
- A key prerequisite for the transition is the planned grid extension – within Austria but also in the European transmission grid in general
- The **impact of climate change** will gain importance in studies related to **security of supply** and **evaluation of extreme events**

- Esterl, T., Zegers, A., Spreitzhofer, J., Totschnig, G., Knöttner, S., Strömer, S., Übermasser, S., Leimgruber, F., Brunner, H., Schwalbe, R., Suna, D., Resch, G., Schöniger, F., Von Roon, S., Hübner, T., Ganz, K., Veitengruber, F., Freiberger, L., Djamali, A. (2022): *Flexibilitäsangebot und -nachfrage im Elektrizitätssystem Österreichs 2020/2030*. URL <u>https://www.econtrol.at/documents/1785851/1811582/20220207_Flexibilitaetsstudie_Bericht_FINAL.pdf/244c4f3c-c8a2-1114-c287-6d6b81d07817?t=1650436768857</u>
- R. Haas, G. Resch, B. Burgholzer, G. Totschnig, G. Lettner, H. Auer, J. Geipel (2017): Stromzukunft Österreich 2030: Analyse der Erfordernisse und Konsequenzen eines ambitionierten Ausbaus erneuerbarer Energien. TU Wien, Energy Economics Group; <u>https://www.igwindkraft.at/?mdoc_id=1035978</u>
- G. Resch, L. Liebmann, F. Schöniger (2019): "*Mission#Impact Ökonomische Neubewertung des Ausbaus und des resultierenden Investitions- und Förderbedarfs erneuerbarer Energien in Österreich*"; Report for Oesterreichs Energie.
- SECURES project (2022):Securing Austria's Electricity Supply in times of Climate Change. https://eeg.tuwien.ac.at/research/projects/secures
- Suna D., Totschnig G., Schöniger F., Resch G., Spreitzhofer, J., Esterl, T. (2022): Assessment of Flexibility Needs and Options for a 100% Renewable Electricity System by 2030 in Austria. Accepted for publication in Smart Energy.
- Thöni, M. (2021): *Erneuerbaren-Ausbau-Gesetz.* Presentation at IEWT Conference 2021.
 <u>https://iewt2021.eeg.tuwien.ac.at/download/contribution/presentation/284/284_presentation_20210928_120436.pptx</u>

Franziska Schöniger

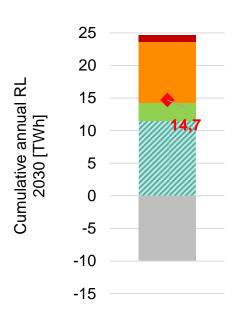
TU Wien

Energy Economic Group, EEG Gußhausstraße 25-29 / E370-3 1040 Vienna, Austria

Tel: +43 1 58801 370 378 Email: schoeniger@eeg.tuwien.ac.at

Web: http://www.eeg.tuwien.ac.at

Thank you!


TU WIEN

Source: Suna et al. (2022))

Flexibility analysis: annual RL

24,36 25 20 Cumulative annual RL [TWh] 14,71 15 12,92 10 5 0 Annual RL

Status quo (2020) and comparison of scenarios (2030): indication of the annual balance of RL

- Cross-border exchange
- Waste incineration
- Gas
- Other RES
- (Pumped) hydropower storage
- Residual Load-Austria

Annual cumulative RL in 2030 according to the scenario "Typical Year 2030"