CONNECTION CODES – KEY ISSUES

Helge Urdal
ENTSO-E’s Workshop with Stakeholders on the Connection Network Codes national implementation.

25 February 2016
Vienna
<table>
<thead>
<tr>
<th></th>
<th>The need of network codes and their development</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Key technical requirements for power generating modules (NC RfG)</td>
</tr>
<tr>
<td>3</td>
<td>Key technical requirements for demand connection (NC DCC)</td>
</tr>
<tr>
<td>4</td>
<td>Key technical requirements for HVDC systems and DC-connected power park modules (NC HVDC)</td>
</tr>
<tr>
<td>5</td>
<td>The way towards implementation</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>The need of network codes and their development</td>
</tr>
<tr>
<td>2</td>
<td>Key technical requirements for power generating modules (NC RfG)</td>
</tr>
<tr>
<td>3</td>
<td>Key technical requirements for demand connection (NC DCC)</td>
</tr>
<tr>
<td>4</td>
<td>Key technical requirements for HVDC systems and DC-connected power park modules (NC HVDC)</td>
</tr>
<tr>
<td>5</td>
<td>The way towards implementation</td>
</tr>
</tbody>
</table>
Secure system operation – it’s getting harder

- High Penetration of Wind & Solar Generation
- Remote Generation and Market-Driven Power Flows
- Increasing Frequency Sensitivity due to less Inertia (Non-Synchronous Generation)
- Voltage & Reactive Power Management
- Delays in Grid Reinforcements
- Priority Treatment of Renewable Generation
What are the crucial aspects of system security?

- Build and maintain transmission networks for long-distance power flows
- Implementation of market mechanisms to facilitate a single European electricity market
- Continuous evolution and coordination of system operation
- Stable operation, robustness of and provision of ancillary services by system users

Changes are happening right now.

EU Connection Network Codes

National connection rules
Why do we need connection requirements?

- From a systems engineering approach, the transmission systems and their users (transmission and distribution systems, power generating modules, demand facilities, etc.) need to be considered comprehensively.

- They shall cooperate closely during normal and disturbed operating conditions in order to preserve or restore system security.

- In particular, power generating modules and “active” installations play an important role with their ability to provide ancillary services for:
 - system balancing / frequency control
 - voltage control
 - robustness against disturbances ➔ stable operation
 - system restoration after blackouts
| 1 | The need of network codes and their development |
| 2 | Key technical requirements for power generating modules (NC RfG) |
| 3 | Key technical requirements for demand connection (NC DCC) |
| 4 | Key technical requirements for HVDC systems and DC-connected power park modules (NC HVDC) |
| 5 | The way towards implementation |
Significant users

- Generator capabilities are defined from a system performance perspective and are therefore largely independent from technology.
- Need to be sustainable to cope with evolutions in generation mix.
- Significance is regarded per requirement.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>Basic capabilities to withstand wide-scale critical events; limited automated response/operator control</td>
</tr>
<tr>
<td>Type B</td>
<td>Automated dynamic response and resilience to operational events including system operator control</td>
</tr>
<tr>
<td>Type C</td>
<td>Stable and controllable dynamic response capabilities covering all operational network states</td>
</tr>
<tr>
<td>Type D</td>
<td>Wide-scale network operation and stability including European-wide balancing services</td>
</tr>
</tbody>
</table>
Categories of power generating modules

<table>
<thead>
<tr>
<th>Synchronous area</th>
<th>Lower threshold for Type A</th>
<th>Maximum lower threshold for Type B</th>
<th>Maximum lower threshold for Type C</th>
<th>Maximum lower threshold for Type D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental Europe</td>
<td>0.8 kW</td>
<td>1 MW</td>
<td>50 MW</td>
<td>75 MW</td>
</tr>
<tr>
<td>Nordic</td>
<td>0.8 kW</td>
<td>1.5 MW</td>
<td>10 MW</td>
<td>30 MW</td>
</tr>
<tr>
<td>Great Britain</td>
<td>0.8 kW</td>
<td>1 MW</td>
<td>50 MW</td>
<td>75 MW</td>
</tr>
<tr>
<td>Ireland and NI</td>
<td>0.8 kW</td>
<td>0.1 MW</td>
<td>5 MW</td>
<td>10 MW</td>
</tr>
<tr>
<td>Baltic</td>
<td>0.8 kW</td>
<td>0.5 MW</td>
<td>10 MW</td>
<td>15 MW</td>
</tr>
<tr>
<td></td>
<td>and</td>
<td>and</td>
<td>and</td>
<td>or</td>
</tr>
</tbody>
</table>

| Voltage level | < 110 kV | < 110 kV | < 110 kV | ≥ 110 kV |
Frequency Ranges

- Baltic
 - Synchronous area
 - Ireland and NI
 - Great Britain
 - Nordic
 - Continental Europe

* to be determined by the relevant TSO
** to be determined by the relevant TSO; ≥ time of 47.5 - 48.5 Hz
Frequency Sensitivity Mode

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Power range</td>
<td>$\frac{</td>
</tr>
<tr>
<td>Frequency response insensitivity (not shown)</td>
<td>$\frac{</td>
</tr>
<tr>
<td>Deadband (not shown)</td>
<td>0 – 500 mHz</td>
</tr>
<tr>
<td>Droop s_1</td>
<td>2 – 12 %</td>
</tr>
</tbody>
</table>

Diagram:

\[
s_1[\text{\%}] = 100 \cdot \frac{|\Delta f|}{f_n} \cdot \frac{P_{ref}}{|\Delta P|}
\]

Type C-D
Limited Frequency Sensitivity Mode - Overfrequency

Type A-D

- Synchronous Power Generating Modules:
 P_{ref} is the Maximum Capacity

- Power Park Modules:
 P_{ref} is the actual Active Power output at the moment the LFSM-O threshold is reached or the Maximum Capacity, as defined by the Relevant TSO

$$s_2[\%] = 100 \cdot \frac{|\Delta f| - |\Delta f_1|}{f_n} \cdot \frac{P_{ref}}{|\Delta P|}$$

$$\frac{\Delta f_1}{f_n} = 0.4 - 1\%$$

$$s_2 = 2 - 12\%$$
Limited Frequency Sensitivity Mode - Underfrequency

Type C-D

- **Synchronous Power Generating Modules:**
 \(P_{\text{ref}} \) is the Maximum Capacity

- **Power Park Modules:**
 \(P_{\text{ref}} \) is the actual Active Power output at the moment the LFSM-U threshold is reached or the Maximum Capacity, as defined by the Relevant TSO

\[
\frac{\Delta P}{P_{\text{ref}}} \approx \frac{1}{S_2}
\]

\[
\frac{\Delta f}{f_n} = 0,4 - 1\%
\]

\[
s_2[\%] = 100 \cdot \frac{|\Delta f| - |\Delta f_1|}{f_n} \cdot \frac{P_{\text{ref}}}{|\Delta P|}
\]

\[
s_2 = 2 - 12\%
\]

System stability in case of load imbalance
Usage of possible reserve capacities
Avoidance of load disconnection
Voltage Ranges (Voltage levels $110 \text{kV} \leq U < 300 \text{kV}$)

Synchronous area

- **Baltic**
 - 30 min
 - unlimited

- **Ireland and NI**
 - unlimited

- **Great Britain**
 - unlimited

- **Nordic**
 - unlimited

- **Continental Europe**
 - 60 min
 - unlimited

- **Type D**
 - * to be determined by the relevant TSO in the range of 20 – 60 minutes
Voltage Ranges (Voltage levels 300 kV ≤ U ≤ 400 kV)

- **Synchronous area**
 - 0.85 ≤ U ≤ 1.10
 - 0.88 to be determined by the relevant TSO, but less than 60 minutes
 - 1.097 ≤ U ≤ 1.15

- **Baltic***
 - Unlimited

- **Ireland and NI**
 - Unlimited

- **Great Britain**
 - Unlimited

- **Nordic**
 - Unlimited

- **Continental Europe****
 - Unlimited

* to be determined by the relevant TSO, but less than 60 minutes

** to be determined by the relevant TSO in the range of 20 – 60 minutes

*** Baltic may require capabilities as of Continental Europe for the 400 kV level

**** Spain may require capability of remaining connected for an unlimited period between 1.05 pu and 1.0875 pu, for consistency with existing national regulation
Reactive Power Capability at Maximum Active Power

Synchronous Power Generating Modules

<table>
<thead>
<tr>
<th>Synchronous area</th>
<th>Max. Q/P_{max} range</th>
<th>Voltage range [p.u.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental Europe</td>
<td>0.95</td>
<td>0.225</td>
</tr>
<tr>
<td>Nordic</td>
<td>0.95</td>
<td>0.150</td>
</tr>
<tr>
<td>Great Britain</td>
<td>0.95</td>
<td>0.225</td>
</tr>
<tr>
<td>Ireland + NI</td>
<td>1.08</td>
<td>0.218</td>
</tr>
<tr>
<td>Baltic States</td>
<td>1.0</td>
<td>0.220</td>
</tr>
</tbody>
</table>

Power Park Modules

<table>
<thead>
<tr>
<th>Synchronous area</th>
<th>Max. Q/P_{max} range</th>
<th>Voltage range [p.u.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental Europe</td>
<td>0.75</td>
<td>0.225</td>
</tr>
<tr>
<td>Nordic</td>
<td>0.95</td>
<td>0.150</td>
</tr>
<tr>
<td>Great Britain</td>
<td>0.66</td>
<td>0.225</td>
</tr>
<tr>
<td>Ireland + NI</td>
<td>0.66</td>
<td>0.218</td>
</tr>
<tr>
<td>Baltic States</td>
<td>0.80</td>
<td>0.220</td>
</tr>
</tbody>
</table>
Reactive Power Capability below Maximum Active Power

Power Park Modules

<table>
<thead>
<tr>
<th>Region</th>
<th>Max. Q/Pmax-range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental Europe</td>
<td>0.75</td>
</tr>
<tr>
<td>Nordic</td>
<td>0.95</td>
</tr>
<tr>
<td>Great Britain</td>
<td>0.66</td>
</tr>
<tr>
<td>Ireland + NI</td>
<td>0.66</td>
</tr>
<tr>
<td>Baltic States</td>
<td>0.80</td>
</tr>
</tbody>
</table>
the power generating module shall be capable of remaining connected to the network and continuing to operate stably when the actual course of the phase-to-phase voltages on the network voltage level at the connection point before, during and after a symmetrical fault, remain above the lower limit specified by a voltage-against-time profile.
Fault-Ride-Through Requirements (II)

Voltage-against-time profile parameters

<table>
<thead>
<tr>
<th>synchronous power generating modules</th>
<th>power park modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type B/C</td>
<td></td>
</tr>
<tr>
<td>voltage parameters [pu]</td>
<td>time parameters [sec]</td>
</tr>
<tr>
<td>[U_{\text{ret}}]: 0.05 – 0.3</td>
<td>[t_{\text{clear}}]: 0.14 – 0.15*</td>
</tr>
<tr>
<td>[U_{\text{clear}}]: 0.7 – 0.9</td>
<td>[t_{\text{rec1}}]: [t_{\text{clear}}]</td>
</tr>
<tr>
<td>[U_{\text{rec1}}]: [U_{\text{clear}}]</td>
<td>[t_{\text{rec2}}]: [t_{\text{rec1}}] – 0.7</td>
</tr>
<tr>
<td>[U_{\text{rec2}}]: 0.85 – 0.9 und</td>
<td>[t_{\text{rec3}}]: [t_{\text{rec2}}] – 1.5</td>
</tr>
<tr>
<td>[U_{\text{rec2}}]: U_{\text{clear}}</td>
<td>[\geq U_{\text{clear}}]</td>
</tr>
</tbody>
</table>

Type D	
voltage parameters [pu]	time parameters [sec]
\[U_{\text{ret}}\]: 0	\[t_{\text{clear}}\]: 0.14 – 0.15*
\[U_{\text{clear}}\]: 0.25	\[t_{\text{rec1}}\]: \[t_{\text{clear}}\] – 0.45
\[U_{\text{rec1}}\]: 0.5 – 0.7	\[t_{\text{rec2}}\]: \[t_{\text{rec1}}\] – 0.7
\[U_{\text{rec2}}\]: 0.85 – 0.9	\[t_{\text{rec3}}\]: \[t_{\text{rec2}}\] – 1.5

voltage parameters [pu]	time parameters [sec]
\[U_{\text{ret}}\]: 0	\[t_{\text{clear}}\]: 0.14 – 0.15*
\[U_{\text{clear}}\]: \[U_{\text{ret}}\]	\[t_{\text{rec1}}\]: \[t_{\text{clear}}\]
\[U_{\text{rec1}}\]: \[U_{\text{clear}}\]	\[t_{\text{rec2}}\]: \[t_{\text{rec1}}\]
\[U_{\text{rec2}}\]: 0.85	\[t_{\text{rec3}}\]: 1.5 – 3.0

* or 0.14 - 0.25 if system protection and secure operation so require
Fault-Ride-Through Requirements (III)

- Disconnection not admissible
Disconnection admissible

- $U_{rec1} = 0.5$
- $U_{clear} = 0.25$
- $U_{ref} = 0$
- 1.0
- $U_{rec2} = 0.9$
- $t_{clear} = t_{rec1} = t_{rec2}$
- t_{rec3}
<table>
<thead>
<tr>
<th></th>
<th>The need of network codes and their development</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Key technical requirements for power generating modules (NC RfG)</td>
</tr>
<tr>
<td>3</td>
<td>Key technical requirements for demand connection (NC DCC)</td>
</tr>
<tr>
<td>4</td>
<td>Key technical requirements for HVDC systems and DC-connected power park modules (NC HVDC)</td>
</tr>
<tr>
<td>5</td>
<td>The way towards implementation</td>
</tr>
</tbody>
</table>
Significant users

All demand users directly connected to transmission network are considered to be significant:

- transmission-connected demand facilities;
- transmission-connected distribution facilities, and;
- distribution systems, including new closed distribution systems

All demand units used by users to provide DSR services suitable for transmission use are considered significant:

- Active Power Control (APC)
- Reactive Power Control (RPC)
- Transmission Constraint Management (TCM)
- System Frequency Control
- Very Fast Active Power Control

All singularly or collectively can have a cross border influence on the Transmission Network

However requirements only apply to demand facilities, system and/or demand units that are:

- New
- Above 1000V and have been modified to such an extent that its connection agreement must be substantially revised
Demand Side Response – The Objective

Reserve capability is required due to uncertainty ahead
- Demand and unscheduled position for generation
- Increasing forecasting errors due to high penetration of RES

⇒ **a bigger volume of reserve will be needed to ensure system security.**

Reserves are typically required when an incident occurs until replacement power can be produced defined as reserve ancillary services
- During high RES production, synchronous generation could be displaced, the most economic service for providing reserves

⇒ **Risk of a lack of services during high RES production periods**
Reactive Power Requirements

Static
- **Applies to:**
 - Transmission Connected Demand Facilities
 - Transmission Connected Distribution Systems
- **Reactive power range requirements are:**
 - TSO specified: Maximum range is 48% (0.9PF) of maximum import or export capability whichever is larger
 - At the connection Point
 - Net of on-site generation at connection point

Network charging
- **Applies to:**
 - Transmission Connected Distribution System
- **Reactive power range requirements are:**
 - Requirement at TSO request (A justified and agreed alternative is possible)
 - At 25% of maximum import and 1PU voltage no mvar export
 - Static point - compliance by simulation

Active
- **Applies to:**
 - Transmission Connected Distribution System
- **Active (Dynamic) Reactive power range requirements are:**
 - Requirement at TSO request (DSO can request TSO to consider applying requirement)
 - Control method to be agreed – SoS to be ensured to TSO/DSO networks
 - Roadmap with timelines to be in justification
Demand Side Response

Demand response services requirements are distinguished based on the following categories:

(a) remotely controlled:
 (i) demand response Active Power Control (APC);
 (ii) demand response Reactive Power Control (RPC), and;
 (iii) demand response Transmission Constraint Management (TCM)

(b) autonomously controlled:
 (i) demand response System Frequency Control (SFC), and;
 (ii) demand response Very Fast Active Power Control (VFAPC)

Other services excluded as they do not have a cross-border impact
Demand Side Response Remote controlled

• Frequency and Voltage requirements met by all remote controlled demand units (APC, RPC, TCM)

• Below 110kV connection point voltage requirements specified by system operator

• All demand units providing remote control services primarily must:
 • Notify the system operator of changes to its capability
 • Be controllable via a signal from system operator
 • Through aggregation be able to control the static reactive devices for RPC at each facility
 • Be able to withstand a RoCoF set by TSO at 110kV and above and following a stakeholder consultation also below 110kV
Problems in future with existing Low Frequency Demand Disconnection (LFDD)

LFDD disconnects demand to restore frequency from low levels.

Embedded Generation means that demand stations can sometimes produce power.

Therefore effectiveness of LFDD reduced or counter productive.

DSR SFC – The Objective
Demand Side Response System Frequency Control - Example
Demand Side Response Very Fast Active Power Control – The objective

• System inertia opposes rapid changes in frequency and voltage – permits time for other network devices to respond

• Primarily the summated physical mass in machinery in generators provides system inertia

• VFAPC is needed to replace inertia lost when supplying network with physically lighter renewable generation

• Commonly referred to as synthetic inertia
If demand facility owner or closed distribution system operator enter into a contract with the TSO, the contract will include:

- (a) a change of active power related to a measure (i.e. rate-of-change-off-Frequency);
- (b) the operating principle of the control system, and;
- (c) the response time (no longer than 2 seconds)
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The need of network codes and their development</td>
</tr>
<tr>
<td>2</td>
<td>Key technical requirements for power generating modules (NC RfG)</td>
</tr>
<tr>
<td>3</td>
<td>Key technical requirements for demand connection (NC DCC)</td>
</tr>
<tr>
<td>4</td>
<td>Key technical requirements for HVDC systems and DC-connected power park modules (NC HVDC)</td>
</tr>
<tr>
<td>5</td>
<td>The way towards implementation</td>
</tr>
</tbody>
</table>
Scope of application

Power Park Module(s) AC collected and DC connected to the main electricity system

HVDC connections between synchronous areas or between control areas including back to back

HVDC connections embedded within one control area

HVDC connections between AC collected PPMs and the main electricity system

Connection Point(s)

NC HVDC apply for new connections
TYNDP2014
- 40% of investments (20,000km) DC based
- Main drivers are offshore RES, IEM integration of peninsulas, bring remote power to consumption centers
- No expectation of offshore meshing commissioned by 2030
NC HVDC General Approach

Capability of HVDC systems relevant for cross border system security
- make use of HVDC’s inherent capabilities – fast active and reactive power control, etc.
- increase grid flexibility, capability and controllability
- maintain system security

DC connected PPMs and associated HVDC connections
- need to have *economic consistent coordinated requirements* so as not to impair requirements at AC onshore transmission connection point
- consider the *long term development* of the network

Coping with different technologies
- Requirements should not favour or discriminate technology

Considering potential future DC grids
- no barrier to future expansion into multi-terminal or meshed DC grids
Frequency Sensitivity Mode for HVDC systems

\[
\frac{\Delta P}{P_{\text{max}}} = \frac{100}{s_f[f_n]} \frac{\Delta f}{f_n} \quad \text{(for } 0 > f \geq f_c)
\]

Transmitted active power
(operating setpoint)

\[
\frac{\Delta P}{P_{\text{max}}} = \frac{100}{s_f[f_n]} \frac{\Delta f}{f_n} \quad \text{(for } 0 < f \leq f_c)
\]

Minimum Active Power Transmission Capacity (import)

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency response deadband</td>
<td>0 – ±500mHz</td>
</tr>
<tr>
<td>Droop (s_f) (upward regulation)</td>
<td>Minimum 0.1%</td>
</tr>
<tr>
<td>Droop (s_j) (downward regulation)</td>
<td>Minimum 0.1%</td>
</tr>
<tr>
<td>Frequency response insensitivity</td>
<td>Maximum 30 mHz</td>
</tr>
</tbody>
</table>
Active Power Response of HVDC systems

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum admissible initial delay t_i</td>
<td>0.5 seconds</td>
</tr>
<tr>
<td>Maximum admissible time for full activation t_2, unless longer activation times are specified by the relevant TSO</td>
<td>30 seconds</td>
</tr>
</tbody>
</table>

Active power frequency response capability of an HVDC system. Delta P is the change in active power triggered by the step change in frequency.
Limited Frequency Sensitivity Mode – Underfrequency for HVDC systems

Active power frequency response capability of HVDC systems in LFSM-U. Delta P is the change in active power output from the HVDC system, depending on the operation condition a decrease of import power or an increase of export power. fn is the nominal frequency in the AC network or networks the HVDC system is connected and Delta f is the frequency change in the AC network or networks the HVDC is connected. At under frequencies where f is below f2, the HVDC system has to increase active power output according to the droop s4.
Limited Frequency Sensitivity Mode – Overfrequency for HVDC systems

System stability in case of load imbalance
Prevention of „mass disconnections“ at certain frequencies
No „uncontrolled disconnections“ of generating units

Active power frequency response capability of HVDC systems in LFSM-O. \(\Delta P \) is the change in active power output from the HVDC system and, depending on the operational conditions, either a decrease of import power or an increase of export power. \(f_n \) is the nominal frequency of the AC network or networks the HVDC system is connected to and \(f \) is the frequency change in the AC network or networks the HVDC is connected to. At over frequencies where \(f \) is above \(f_1 \) the HVDC system shall reduce active power according to the droop setting.

\[
\frac{\Delta P}{P_{\text{max}}} = -\frac{100}{s_1[\%]} \frac{f - f_1}{f_n} \quad \text{(for } f > f_1)\]

\(P_{\text{max}} \) is the Maximum HVDC Active Power Transmission Capacity.
Active Power Control and Frequency Support

Coordinated approach for maintaining system security

- Frequency ranges - network assets as HVDC connections should stay connected at minimum as long as generation/demand has to remain connected
- ROCOF Withstand capabilities - ensure that network assets remain in operation during severe system events, especially under those conditions which generation and demand have to withstand as well.

Frequency control functions

- Essential for a future RES based secured transmission system and can help the EU to achieve its energy goals providing more transmission grid flexibility, controllability and capability
 - fast active and reactive power control
 - emergency control actions

Synthetic inertial capability

- Synchronous generators have an inherent capability to resist / slow down frequency changes which converter based technologies do not have.
- allow further expansion of RES which does not naturally contribute to inertia,
Reactive Power Capability at Maximum Active Power for HVDC systems

<table>
<thead>
<tr>
<th>Synchronous Area</th>
<th>Maximum range of Q/P<sub>max</sub></th>
<th>Maximum range of steady-state Voltage level in PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental Europe</td>
<td>0.95</td>
<td>0.225</td>
</tr>
<tr>
<td>Nordic</td>
<td>0.95</td>
<td>0.15</td>
</tr>
<tr>
<td>Great Britain</td>
<td>0.95</td>
<td>0.225</td>
</tr>
<tr>
<td>Ireland and Northern Ireland</td>
<td>1.08</td>
<td>0.218</td>
</tr>
<tr>
<td>Baltic States</td>
<td>1.0</td>
<td>0.220</td>
</tr>
</tbody>
</table>
Reactive Power Capability at Maximum Active Power for DC connected PPMs

bilateral agreement between the DC-connected power park module owner with the owners of the HVDC systems connecting the DC-connected power park module in case of a single connection point on a AC network possible (see Art. 40.2)
The diagram represents the lower limit of a voltage-against-time profile at the connection point, expressed by the ratio of its actual value and its reference 1 pu value in per unit before, during and after a fault. U_{ret} is the retained voltage at the connection point during a fault, t_{clear} is the instant when the fault has been cleared, U_{rec1} and t_{rec1} specify a point of lower limits of voltage recovery following fault clearance. U_{block} is the blocking voltage at the connection point. The time values referred to are measured from t_{fault}.

<table>
<thead>
<tr>
<th>Voltage parameters [pu]</th>
<th>Time parameters [seconds]</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{ret}</td>
<td>t_{clear}</td>
</tr>
<tr>
<td>U_{rec1}</td>
<td>t_{rec1}</td>
</tr>
<tr>
<td>U_{rec2}</td>
<td>t_{rec2}</td>
</tr>
</tbody>
</table>
HVDC System Robustness

- Article 29: *Interaction between HVDC systems or other plants and equipment*
- Article 30: *Power oscillation damping*
- Article 31: *Sub synchronous torsional interaction damping capability*
 - All parties identified by the relevant TSO as relevant to each connection point, including the relevant TSO, shall contribute to the studies and shall provide all relevant data and models as reasonably required to meet the studies.

- Article 32: *Network characteristic*
 - The HVDC system shall be capable of operating within the range of short circuit power and network characteristic specified

- Article 33: *HVDC system robustness*
 - The HVDC system shall be capable of finding stable operation points during and after any planned or unplanned change in the HVDC system or AC network to which it is connected.
 - The HVDC owner shall ensure that the tripping or disconnection of an HVDC converter station, as part of any multi-terminal or embedded HVDC system does not result in transients at the connection point beyond the limit specified by the relevant TSO.
 - The HVDC system shall withstand transient faults on HVAC lines in the network adjacent or close to the HVDC system
<table>
<thead>
<tr>
<th></th>
<th>The need of network codes and their development</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Key technical requirements for power generating modules (NC RfG)</td>
</tr>
<tr>
<td>3</td>
<td>Key technical requirements for demand connection (NC DCC)</td>
</tr>
<tr>
<td>4</td>
<td>Key technical requirements for HVDC systems and DC-connected power park modules (NC HVDC)</td>
</tr>
<tr>
<td>5</td>
<td>The way towards implementation</td>
</tr>
</tbody>
</table>
The challenge of NC RfG national implementation

Timeframe for national implementation

National specifications of non-exhaustive requirements
2 years
Manufacturer product development
1 year

NC RfG Implementation
entry into force
application
DCC Frequency Ranges

Synchronous area

- **Baltic**
 - ≥ 30min *
 - ≥ x min **
 - unlimited
 - ≥ 30min *

- **Ireland and NI**
 - 90min
 - ≥ 90min *
 - unlimited
 - 90min

- **Great Britain**
 - 20sec
 - 90min
 - ≥ 90min *
 - unlimited
 - 90min

- **Nordic**
 - 30min
 - ≥ 30min *
 - unlimited
 - 30min

- **Continental Europe**
 - ≥ 30min *
 - ≥ x min **
 - unlimited
 - 30min

Applies to:
- Transmission-connected demand facilities,
- Transmission-connected distribution facilities
- Demand units providing DSR
- Distribution systems

Note: not restricted to transmission connected

* to be determined by the relevant TSO ** to be determined by the relevant TSO; ≥ time of 47.5 - 48.5 Hz
DCC Voltage Ranges (Voltage levels 110 kV ≤ U < 300 kV)

Applies to:
- Transmission-connected demand facilities,
- Transmission-connected distribution facilities
- Transmission-connected distribution systems
- Demand units providing DSR connected at 110kV or above

* to be determined by the relevant TSO in the range of 20 – 60 minutes
DCC Voltage Ranges (Voltage levels 300 kV ≤ U ≤ 400 kV)

Applies to:
- Transmission-connected demand facilities,
- Transmission-connected distribution facilities
- Transmission-connected distribution systems
- Demand units providing DSR connected at 110kV or above

* to be determined by the relevant TSO, but less than 60 minutes
** to be determined by the relevant TSO in the range of 20 – 60 minutes
*** Baltic may require capabilities as of Continental Europe for the 400 kV level
**** Spain may require capability of remaining connected for an unlimited period between 1.05 pu and 1.0875 pu, for consistency with existing national regulation

- **Synchronous area**
 - Baltic***
 - Unlimited
 - Ireland and NI
 - Unlimited
 - Great Britain
 - Unlimited
 - Nordic
 - Unlimited
 - Continental Europe****
 - Unlimited

U/ p.u.
Demand Side Response System Frequency Control

• Frequency and Voltage requirements met by all SFC demand units

• Below 110kV connection point voltage requirements specified by system operator

• All demand units providing system frequency control primarily must:
 • Respond to changes in frequency proportionally with an increase or reduction in demand
 • Be able to detect and respond to a +/-0.01Hz change in frequency refreshed at least every 200mS
 • Have a 5 minute random timer on return to service
 • Meet TSO specified dead-band around 50Hz and frequency where it provides its maximum response
HVDC Frequency Ranges

- **RfG Great Britain**
 - 20sec: 90min
 - ≥ 30min *
 - ≥ x min **
 - unlimited
 - 90min
 - 15min

- **RfG Continental Europe**
 - ≥ 30min *
 - ≥ x min **
 - unlimited
 - 30min

- **HVDC Systems**
 - 60sec: 90min
 - ≥ 90min *
 - unlimited
 - 90min
 - 15min*

- **DC connected PPMs**
 - 20sec: 90min
 - ≥ 90min *
 - unlimited
 - 90min
 - 15min

* to be determined by the relevant TSO

** to be determined by the relevant TSO; ≥ time of 47.5 - 48.5 Hz

longer than for generation and DC connected PPMs
Voltage Ranges for HVDC systems (Voltage levels 110 kV ≤ U < 300 kV)

Synchronous area

- Baltic: 30 min, unlimited, 20 min
- Ireland and NI: unlimited
- Great Britain: unlimited
- Nordic: unlimited, 60 min
- Continental Europe: unlimited

* to be determined by the relevant TSO but not less than 20 minutes
Voltage Ranges for HVDC systems (Voltage levels 300 kV ≤ U ≤ 400 kV)

- **Synchronous area**: Unlimited
- **Baltic***: Unlimited
- **Ireland and NI**: Unlimited
- **Great Britain**: Unlimited
- **Nordic**: Unlimited
- **Continental Europe****: Unlimited

```
<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Capability</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88 – 1.05</td>
<td>Unlimited</td>
<td>15 min</td>
</tr>
<tr>
<td>1.05 – 1.10</td>
<td>Unlimited</td>
<td>20 min</td>
</tr>
<tr>
<td>0.85 – 0.95</td>
<td>Unlimited</td>
<td>x min*</td>
</tr>
<tr>
<td>0.95 – 1.00</td>
<td>Unlimited</td>
<td>60 min**</td>
</tr>
<tr>
<td>1.05 – 1.0875</td>
<td>Between 20 – 60 min</td>
<td></td>
</tr>
<tr>
<td>1.0875 – 1.1</td>
<td>Between 20 – 60 min</td>
<td></td>
</tr>
</tbody>
</table>
```

* to be determined by the relevant TSO, but not more than 60 minutes

** to be determined by the relevant TSO in the range of 20 – 60 minutes

*** Baltic may require capabilities as of Continental Europe for the 400 kV level

**** between 1.05 pu and 1.0875 pu to be specified by each TSO, but not less than 60 minutes, 1.0875 pu to 1.1 pu 60 min.
Voltage Ranges for DC connected PPMs

*) to be specified by the relevant system operator, in coordination with the relevant TSO. Various sub-ranges of voltage withstand capability can be specified.

**) unlimited, unless specified otherwise by the relevant system operator, in coordination with the relevant TSO.

***) to be specified by the relevant system operator, in coordination with the relevant TSO.
Voltage Ranges for DC connected PPMs (Voltage levels 300 kV ≤ U ≤ 400 kV)

- Continental Europe: Unlimited
- Great Britain: Unlimited between 1.05 pu and 1.0875 pu, specified by each TSO, but not less than 60 minutes, 1.0875 pu to 1.1 pu 60 min.
- Nordic: Unlimited
- Ireland and NI: Unlimited
- Baltic: Unlimited, 0.88 pu to 1.07 pu, 20 min; 1.07 pu to 1.097 pu, unlimited.

* to be determined by the relevant TSO, but not more than 60 minutes
** to be determined by the relevant TSO in the range of 20 – 60 minutes
*** Baltic may require capabilities as of Continental Europe for the 400 kV level
**** Continental Europe may need capabilities as of Great Britain for the 400 kV level

U/ p.u.