Unlock power system flexibility through improved operational practices

Hannele Holttinen, Principal Scientist; OA IEAWIND Task 25

Hannele.Holttinen@vtt.fi
IEA Wind Task 25 – What Does It Do?

- Started in 2006, now 17 countries + WindEurope participate to provide an international forum for exchange of knowledge
- State-of-the-art: review and analyze the results so far: latest report end 2018
- Formulate guidelines- Recommended Practices for Integration Studies: Update published in August
- Fact sheets and wind power production time series. Literature list.

https://community.ieawind.org/task25/
Contents

- Experience on operational practices with wind integration
 - focusing on reaching the first 10% share
 - focusing on system operators and generator side flexibility
Experience of wind integration is increasing

- Hourly maximum wind shares in European countries
 - Denmark and Portugal > 100%
 - Germany 80%
 - Ireland > 60% of demand

- Wind energy in Europe:
 - Ranges 5-52% of installed capacity,
 - Max duration of low generation: 38 hours < 10% of capacity
Operational practices from experience of integration

- First 10-20% share of wind:
 - Updated information from on-line production and forecasts. Possibility to curtail in critical situations
 - Transmission/trade with neighbouring areas recognized as a key enabler, with regional planning efforts

- Higher shares of wind:
 - Technical capabilities of wind power plants used in grid support, also stability
 - Generation and demand flexibility and adequacy
 - Market design and value of wind
On-line data to system operator control room

- Solution in Spain and Portugal: Installation of Wind Dispatch Centres
 - Spain requirement 2007 for all >10 MW
 - The 1st “Wind DSO” started operation in Portugal in 2009
Using short term forecasting

- Make sure wind and solar energy is taken in the day-ahead unit commitment and dispatch, to enable other power plants to flex down
 - Energy traded at markets with forecasting
- Flexibility during operating hour: forecast errors determine the need for operating reserve

Recommendation. Should be dynamic (D-1) for higher shares of wind
Reserve requirements – summary (static)

- Different time scales for uncertainties captured
- All static – how to present dynamic results still to be developed

Results for hourly variability are similar for the studies
WIND POWER FORECASTS TO REDUCE IMBALANCES

Mean Absolute Error

+ on-line measurements!
System operation - possibility to curtail surplus generation

- Curtailments are a signal of lack of flexibility
- Delays of transmission: Italy and Texas – diminished after grid build out. Germany, still an issue
- Inflexibilities of coal power plants and tariffs: China
- Limits of non synchronous generation: Ireland (small system)
- Denmark and Spain: market operation of wind power plants offering down-regulation (not in the graphs)

Source: Prof Yasuda, Kyoto University
Trade with neighbouring areas will help balancing

- Denmark integration of close to 50% wind share is based on using Nordic power system flexibility
- Sharing balancing task with neighbouring system operators in Germany has resulted in reduction of use of frequency control, while wind and solar have increased

Figure 13: Total activated German Secondary Reserves (or aFRR) per year marked with events considered in this paper.
Experience with grid codes: Requiring fault-ride-through, and setting frequency/voltage limits when trip-off

- Low voltages due to short-circuits may lead to the disconnection of large shares of old technology wind power production
- Modern turbines comply with this – Australia case, for weak systems need to require many consecutive faults

Ride through fault capabilities attenuate the problem.
Towards higher shares: enabling system services from wind and solar

- Asking for capabilities in grid codes, and paying for services of system support if needed/used
- Experience of frequency response: Very fast (inertial) in Quebec, fast (primary) response in Texas, secondary in Colorado. Market compliance in Spain, Denmark

Figure 12: delta control mode – denoted with spinning reserve (Energinet.dk, 2010)

Figure 13: active power setpoint as a function of frequency deviation (ENTSO-E, 2012)
Experience: Wind power frequency response is fast and high quality

- System operator ERCOT in Texas: wind power plants actively used in frequency control
 - fast response of WPPs actually reduce the overall need for automatically activated frequency support services

Source: Julia Matevosjana, ERCOT
Experience: using wind power plants at AGC when they are being curtailed

- Wind power plant in Xcel/PSCO is first manually block curtailed and then put on AGC regulation.
- Resulting area control error is shown in yellow.

Source: Drake Bartlett, Xcel
Using flexibility of thermal plants. Case Denmark.

- Changing the tariffs of smaller CHP plants to operate according to market prices
- Retrofitting the larger thermal plants
- Using the flexibility of hydro power from Nordic market

HIGH FLEXIBILITY OF POWER PLANTS

Operational range: 10–100%

Regulating rate: 3-4% per minute
Operational practices: market design to enable all flexibilities to bid

- Enabling also wind power plants to bid their flexibility to the markets
- With extra gains from balancing products
Ways to mitigate impact of wind and solar—large markets, and system services

- Larger market area – less correlated wind power production
- Faster markets – following better the load/net load

- Offering system services: frequency control
 - In situations where surplus energy /very low prices, wind can operate part load and offer fast up- and down-regulation
 - Often this becomes cost effective at larger (>20%) shares of wind and solar
Summary

- A lot can be made to integrate wind and solar in existing power systems – operational practices the key
 - Access to on-line information from wind and solar, forecasting energy in dispatch, possibility to curtail in critical situations
 - Assessing flexibility from neighbouring areas – also smoothing impact reducing need for balancing
 - Assessing existing flexibility from thermal and hydro power plants, preparing to use flexibility from wind and solar power plants
- For high shares of variable generation, need for more flexibility from thermal plants, demand side and potentially also storages
Thank you!
Recommending methods for integration costs – work of IEA WIND Task 25

- Comparing studies for Balancing costs, Grid infra costs, and Capacity value of wind;
 - Depend on share of VRE and flexibility available in the system
- Recommended practices on methods: **Outcome cannot find a proper way to draw estimates of integration costs**