LEAP USER GROUP WORKSHOP AS PART OF THE REGIONAL EXCHANGE OF MODELLING EXPERTS IN THE WB6

Workshop

General introduction

Fraunhofer Institute for Systems and Innovation Research ISI Breslauer Strasse 48, 76139 Karlsruhe Viktor Müller Johannes Eckstein

Source: Fraunhofer ISI / Pudlik

WORKSHOP PROGRAM

- 24.02: Selecting and programming indicators
- 03.03: Integrating non-energy sectors and emissions in LEAP
- 10.03: Structuring your LEAP model to reflect policies
- 17.03: Supply-side optimization with LEAP

BUSINESS UNIT: CLIMATE POLICY

- Questions regarding climate policy developments (part. gas markets, hydrogen) and innovation support policies (EU Innovation Fund, CCfDs)
- Questions related to emission trading systems (EU and other ETS)
- Climate change mitigation strategies and their assessment
- Johannes Eckstein is senior researcher in the business unit Climate Policy in the Competence Center Energy Policy and Energy Markets
- Work focus:
 - energy and climate policy development and evaluation
 - focus on industrial applications and policies
 - scenario-based energy system modelling

BUSINESS UNIT: GLOBAL SUSTAINABLE ENERGY TRANSITIONS

- Support of planning and implementation of sustainable energy and development strategies in emerging and developing countries.
 - assessment of potentials and possible diffusion pathways for renewable energy technologies
 - model-based analyses of energy systems
 - evaluation of local value creation potentials for energy technologies
 - development of policy instruments and strategies supporting sustainable energy transitions.
- Viktor Müller is junior researcher in the business unit Global Sustainable Energy Transitions in the Competence Center Energy Policy and Energy Markets
- Work focus:
 - promotion strategies for renewables energies
 - hydrogen technologies and synthetic fuels
 - modelling of energy systems

LEAP USER GROUP WORKSHOP AS PART OF THE REGIONAL EXCHANGE OF MODELLING EXPERTS IN THE WB6

Fraunhofer Institute for Systems and Innovation Research ISI Breslauer Strasse 48, 76139 Karlsruhe

Supply-side optimization with LEAP

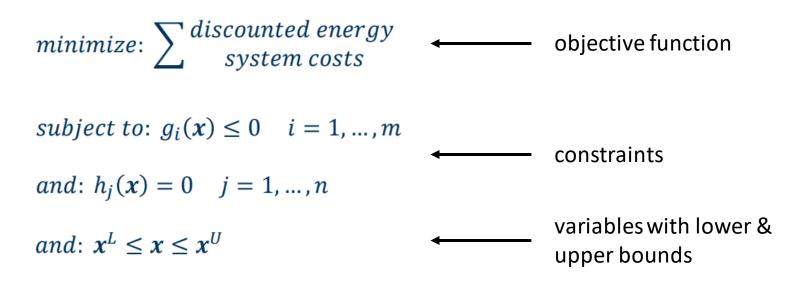
giz Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Source: Fraunhofer ISI / Pudlik

Optimization

SUPPLY-SIDE OPTIMIZATION WITH LEAP

- How do you use optimization functionalities of LEAP in your work?
- How to set up supply side optimization and what LEAP can (not) do
- Should you be using an optimized model for the NECP?

LEAP includes the capability to automatically calculate **least-cost capacity expansion** and dispatch of supply-side Transformation modules based on the use **linear programming-based optimization** frameworks.


optimal is defined as ...

... the energy system configuration with the **lowest total net present value of the social costs** of the system **over the entire period of calculation** (from the base year through to the end year), subject to various **constraints such as meeting energy demands, or limiting emissions.**

Mathematical formulation

IS

© Fraunhofer ISI

F and the set	00 1000/0			
Feature	OSeMOSYS	NEMO		
Developer:	KTH	SEI		
Installation:	Integrated into LEAP	Via Separate Download		
Platform:	GLPK (last updated 2018)	Julia (actively developed at MIT)		
Open source:	Yes	Yes		
Licensing:	Free & Included with LEAP	Free. No separate license required. Can be downloaded from LEAP web site.		
Small data sets:	Faster	Fast		
Larger data sets:	Slow	Fast		
Time slicing:	Limited Flexibility	Very flexible (e.g. seasons, day types & day as 24 slices)		
Energy storage:	No	Yes		
Solvers:	GLPK, CPLEX	GLPK, Cbc, CPLEX, Gurobi, MOSEK, XPRESS.		
Parallel processing:	Only when using CPLEX	Yes		
Actively developed:	Unknown	Yes, by SEI, new capabilities planned.		
Network & power flow simulations:	No	Yes in NEMO & coming to LEAP/NEMO		
Support:	Community-supported forum	Professional & community support.		

Seite 9

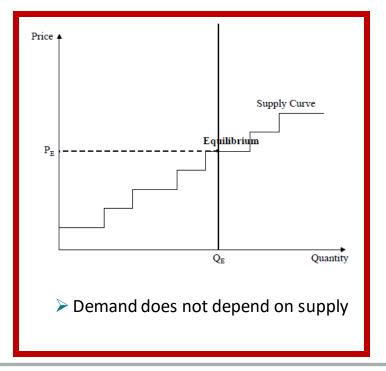
nemo

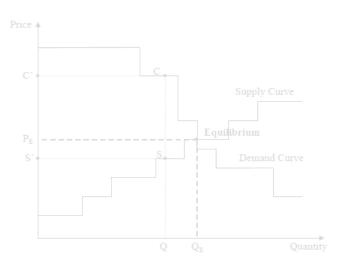
Main Features of NEMO

- Least-cost optimization of energy supply (and demand¹)
- Modeling of emissions and emission constraints
- Modeling of renewable energy targets
- Modeling of energy storage
- Support for multiple regions and regional trade
- > Nodal network simulations and modeling of power and pipeline flow
- Support for multiple solvers, both open-source (CBC and GLPK) and commercial (CPLEX, MOSEK, GUROBI and XPRESS)
- Data stored in an open-source relational database (SQLite), allowing easy access to inputs and results

source: SEI https://leap.sei.org/default.asp?action=NEMO

© Fraunhofer ISI Seite 10


1)



nemo

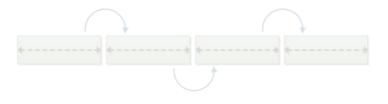
Fixed demand vs Partial equilibrium

NEMO

> Demand subject to price elasticy, price

nemo

Perfect foresight vs limited foresight


NEMO

Perfect foresight

Costs for all years in planning ٠ horizon minimized simultaneously (global optimum found)

Limited foresight

- •
- •

Deutsche Gesellschaft

ür Internationale sammenarbeit (GIZ) GmbH

nemo

Sensitivity and plausibility

- Many optimization models are quite sensitive to their ٠ parameters (exogenous inputs)
- Their initial tendency is to produce a corner solution ٠ e.g., building only one technology
- This compels modeler to add constraints to attain a ٠ plausible result
- The content of these iteratively determined constraints • is critically important – in many ways, it decides the outcome!

Internationale

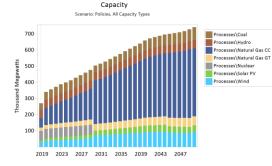
IS

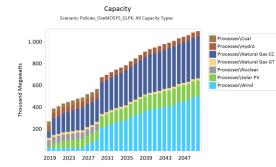
nemo

50						
Settings						×
Scope & Scale	(earc Costs Calculation	ns Optimization Internet F	olders Scripts			
🛛 🗹 Enable Emis	sions Constraints					
Keep Interm	ediate Results					
Calculations:	In window		~			
Installed Optimi	izing Frameworks: OSeM	OSYS, NEMO				
Installed Solvers	s: GLPK, Cbc, MOSEK					
	Run Julia		Reset NEMO			
Number of proc	cessors used by NEMO:	Let NEMO Choose 🗸 🗸				
					Close	? <u>H</u> elp

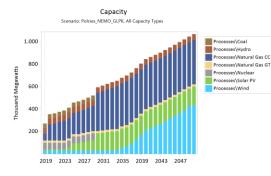
Ticking "Enable Emissions Constraints" provides the option to:

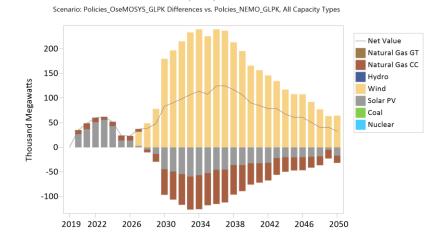
- \geq add an emission limit as a constraint
- add externality costs associated with the emissions


nemo

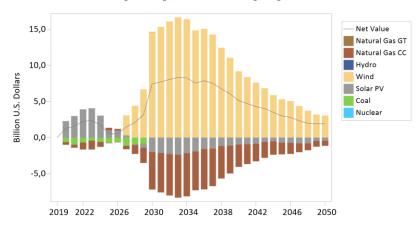

No Optimization

OseMOSYS


NEMO


Deutsche Gesellschaft für Internationale

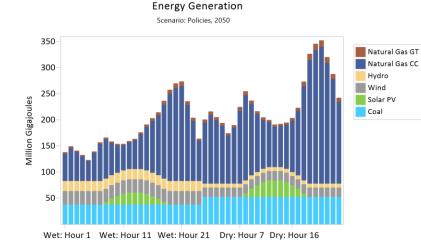
Zusammenarbeit (GIZ) GmbH

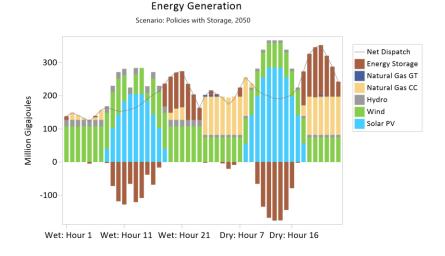

nemo

OseMOSYS vs NEMO

Capacity

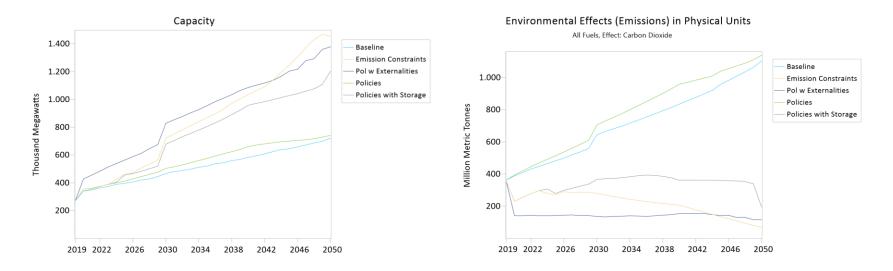
Social Costs Scenario: Policies_OseMOSYS_GLPK Differences vs. Polcies_NEMO_GLPK


Deutsche Gesellschaft


für Internationale Zusammenarbeit (GIZ) GmbH

nemo

NEMO without Storage vs with Storage

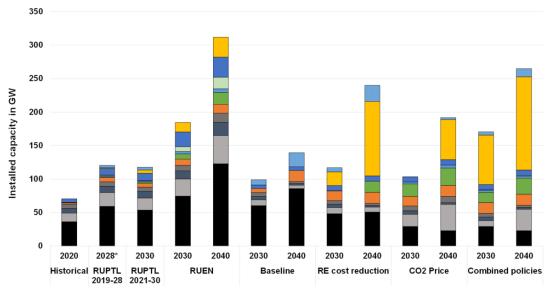


für Internationale

nemo

Emission Constraints

Scenario	Tab	Effect	Expression	Scale	Units
Emission Constraints	Annual Emission Constraint	Carbon Dioxide	InterpFSY(2020; 1000; 2040; 300; 2050; 120)	Million	Metric Tonne
Pol w Externalities	Externality Cost	Carbon Dioxide	100		USD/Metric Tonne



nemo

Coal vs. renewables

Least-cost optimization of the Indonesian power sector

Marek Fritz^a, Jose Antonio Ordonez^{a,b,*}, Johannes Eckstein^a

■ Coal ■ CCGT ■ OCGT ■ Diesel ■ Geothermal ■ Biomass ■ Small hydro ■ Wind ■ Large Hydro ■ Solar PV ■ Pumped Hydro Storage

Figure 3: Installed capacities in 2020, 2030 and 2040 for official power sector plans and cost optimized scenarios. (*) RUPTL 2019-2028 is shown until 2028, as this is the last year of the plan. ¶

nemo

Helpful Links for Optimization with NEMO

YouTube:

Introduction: Introducing NEMO: The Next Energy Modeling system for Optimization Tutorial 2020: Using LEAP2020 to Model Seasonal and Daily Variations in Demand and Supply including Energy Storage Tutorial 2021: Sida LEAP Training Lecture #6: Optimization Modeling with LEAP and NEMO

GitHub

Main Page with source code: https://github.com/sei-international/NemoMod.jl Documentation: https://sei-international.github.io/NemoMod.jl/stable/

Further information

SEI "NEMO: the Next Energy Modeling system for Optimization" https://www.sei.org/projects-and-tools/tools/nemo-the-next-energy-modeling-system-for-optimization/ LEAP Help "Introduction To Optimization" https://leap.sei.org/help/leap.htm#t=Optimization%2FOptimizationIntroduction.htm&rhsearch=optimization&rhhlterm=optimization&rhsyns= %20

Download https://leap.sei.org/ -> Download -> NEMO

LEAP USER GROUP WORKSHOP AS PART OF THE REGIONAL EXCHANGE OF MODELLING EXPERTS IN THE WB6

Workshop

Thanks for joining and reach out for questions and future collaboration

Fraunhofer Institute for Systems and Innovation Research ISIBreslauer Strasse 48, 76139 KarlsruheViktor MüllerViktor MüllerJohannes Ecksteinjohannes.eckstein@isi.fraunhofer.de

Source: Fraunhofer ISI / Pudlik

