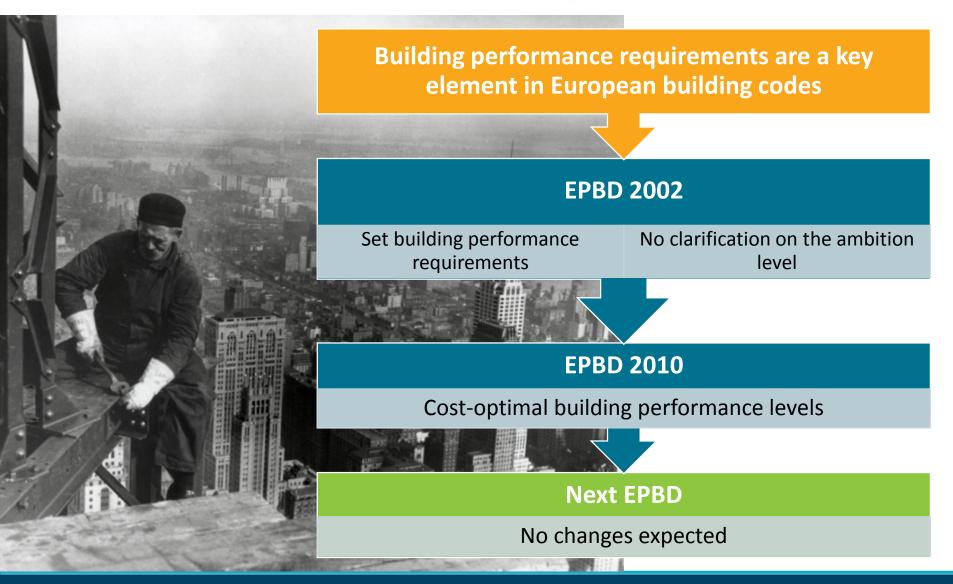


Implementing the cost-optimal methodology

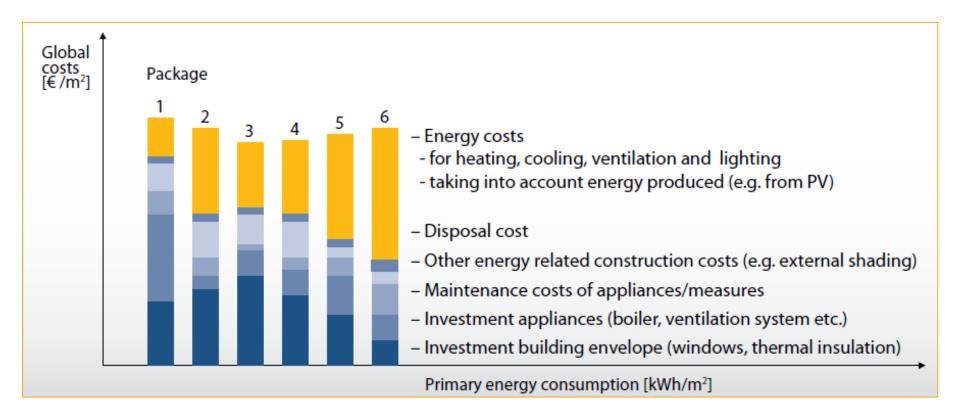

Maarten De Groote

Buildings Performance Institute Europe

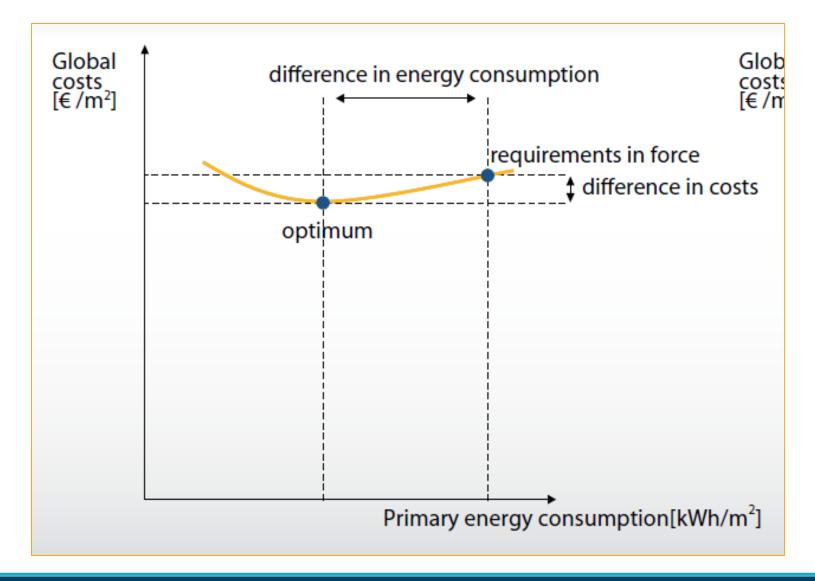
Energy Efficiency Workshop, Energy Community 23 November 2017, Vienna

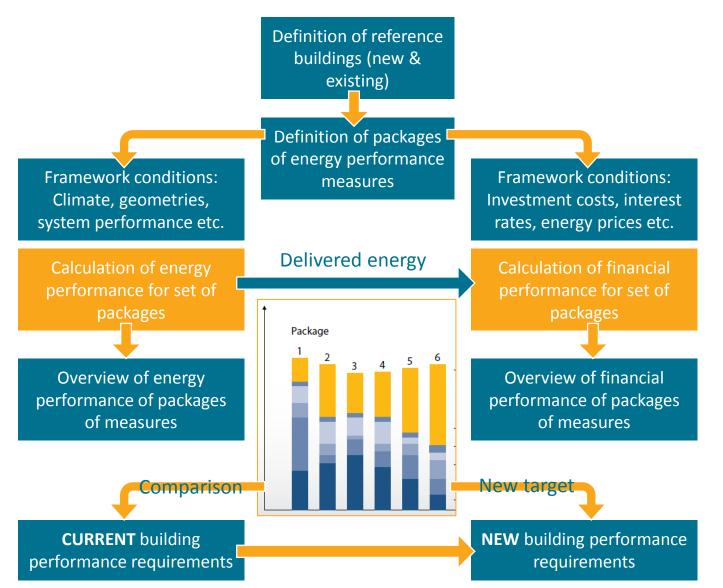
Building performance requirements ... a brief history

Setting energy performance requirements with the cost-optimal methodology


The cost-optimal level is defined as "the energy performance level which leads to the lowest cost during the estimated economic lifecycle"

- **Comparison** report between energy performance requirements and calculated cost-optimal levels
- EC provides a comparative methodology framework
- Discrepancy between cost-optimal level and minimum energy performance requirements should not exceed 15%
- If national requirements less ambitious than cost-optimal → justify the gap
- If gap cannot be justified → plan on how to reduce the gap

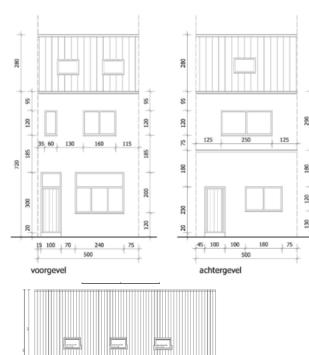

Different packages cost calculations


Concept of cost-optimal building performance requirements

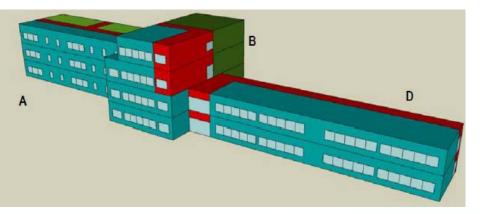
RPIF

Implementation steps

RPIF



Reference buildings – e.g. Germany

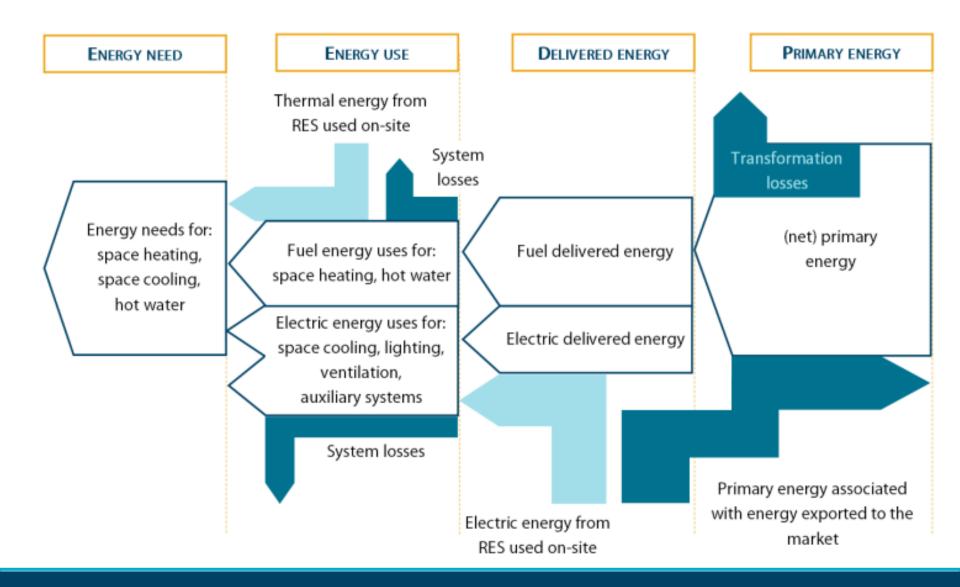

- Identify at least one reference building for new buildings and at least two for existing buildings for the following categories
 - Single-family buildings
 - Apartment blocks/multi-family buildings
 - Office buildings
 - Other non-residential
- Simple geometries and reproducible in practice

Building's characteristics	Single-family building (SFH)	Multi-family building (MFH)
Building sketch		
Heated volume (Ve)	586 m ³	1848 m ³
Heated living space	139 m ²	473.0 m ²
Useful floor area (AN) acc. to EnEV standard	187.5 m ²	591.4 m ²
Surface area (S)	344.5 m ²	776.0 m ²
Surface-area over volume ratio (S/V_)	0.59 m-1	0.42 m-1

Example of references for existing buildings - Belgium

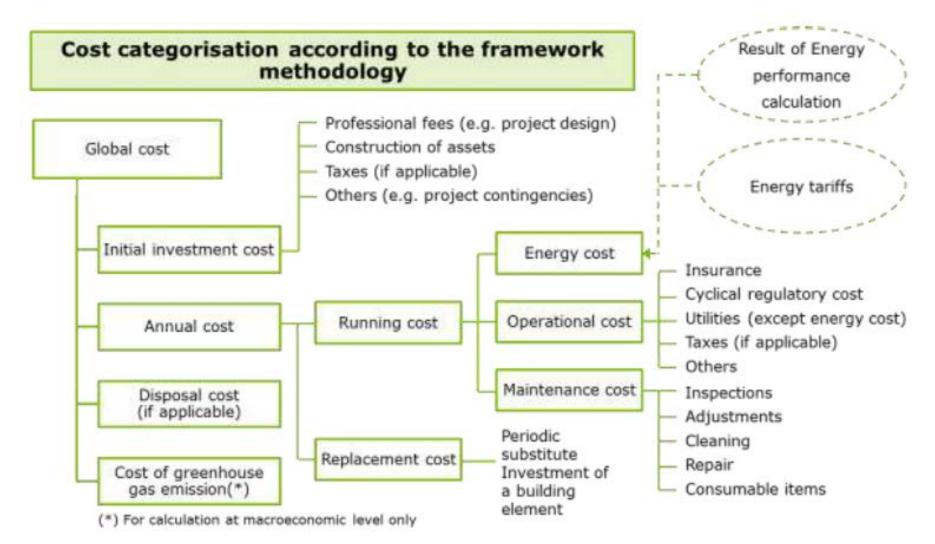
Selection of packages of measures

Reference case which reflects actual regulations


At least 10 calculated packages in addition to the reference case

Based on existing or planned national standards or/and on widely accepted ones

Very ambitious packages of measures should be included


• To estimate the financial and environmental implications of nZEB requirements

Energy performance calculation scheme

Cost categorisation according to the framework methodology

Costs of materials, work and equipment BPIE

Costs assessed on country, regional or climate zone level

Average price for building owner

Including (private perspective) or excluding (societal perspective) all applicable taxes

Including (private cost calculation) or excluding subsidies (societal cost calculation)

Including installation costs

Accurate information is missing \rightarrow stakeholder involvement

Estimated economic lifetime

Countries estimate economic lifetime of building elements and entire building

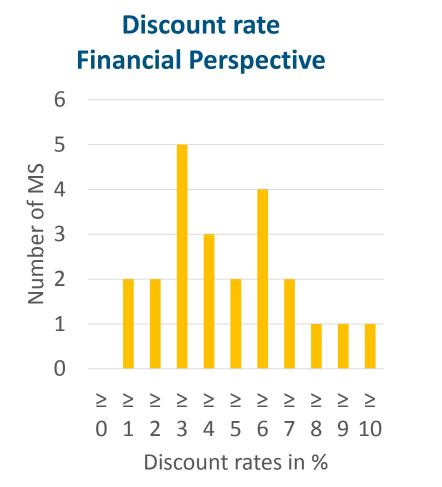
Option: guidance in standard EN 15459 and other standards

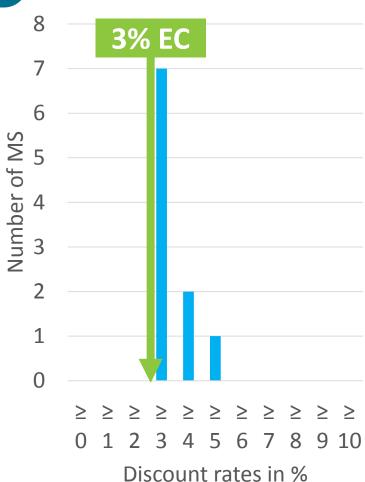
Example economic lifetime Belgium

Schools and residential buildings: 30 years

Offices: 20 years

Parameters impacting the outcomes


Energy Price Development These parameters have not been pre-set and MSs made use of the possibility to adapt to local circumstances


Discount rate

Perspective: financial or macroeconomic Discount rates have to reflect the actual costs of capital for long-term mortgages or the expected minimum return on investment in case of self-financing

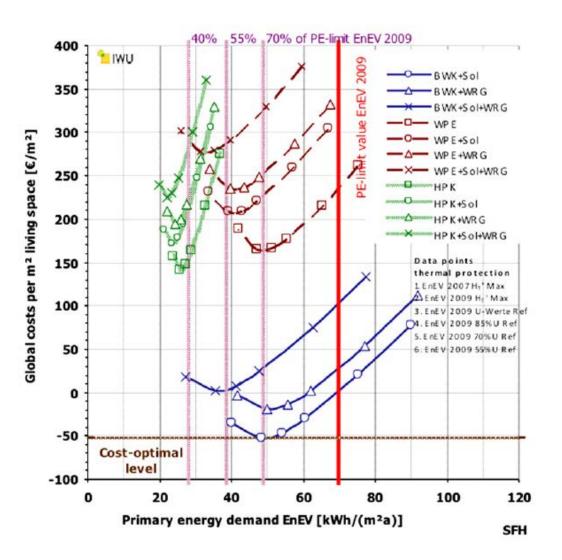
Discount rate Macroeconomic Perspective

ource: Ecofys

1.4% EC 6 Number of MS 4 2 $\mathbf{0}$

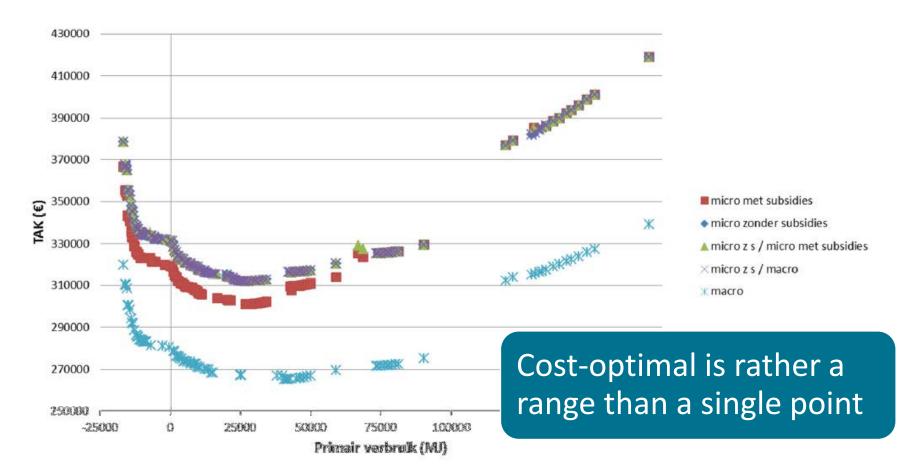
Annual price development in % until 2030 - electricity

 $\geq 0.5 \geq 1.0 \geq 1.5 \geq 2.0 \geq 2.5 \geq 3.0 \geq 3.5 \geq 4.0 \geq 4.5 \geq 5.0 \geq 5.5 \geq 6.0 \geq 6.5$ ≥ 0

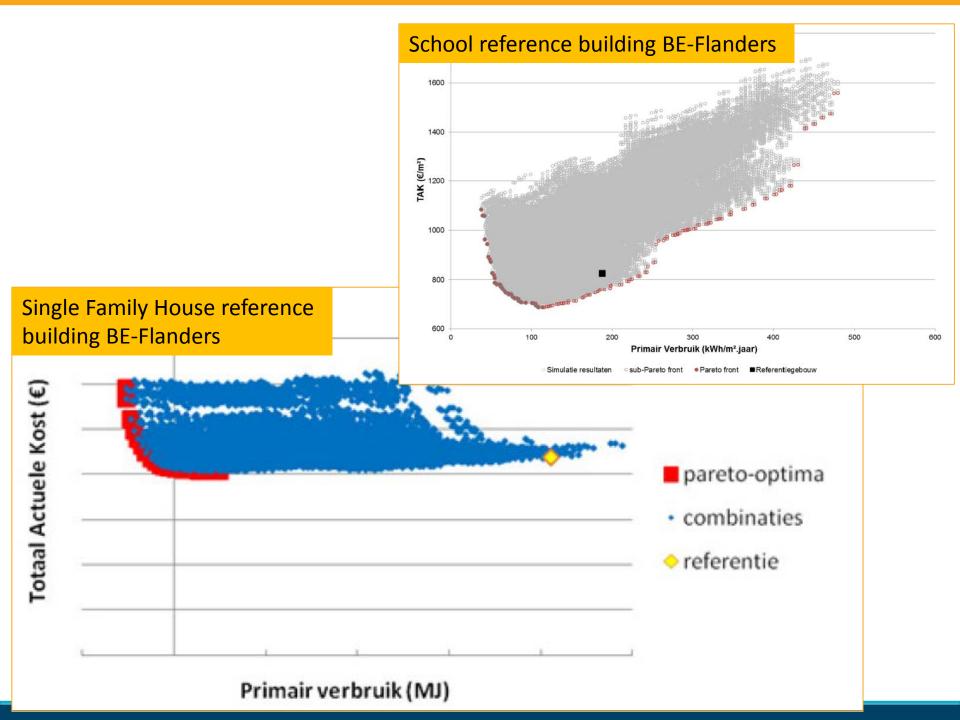

Annual price development in % as given by the MS

Annual price development in % until 2030 - gas **2.8% EC** 8 Number of MS 6 4 2 0 $\geq 0.5 \geq 1.0 \geq 1.5 \geq 2.0 \geq 2.5 \geq 3.0 \geq 3.5 \geq 4.0 \geq 4.5 \geq 5.0 \geq 5.5 \geq 6.0 \geq 6.5$ > 0

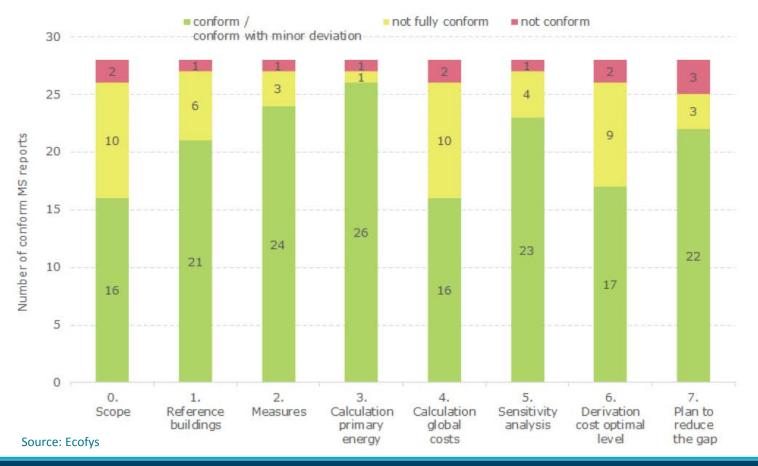
Annual price development in % as given by the MS


Example Germany - Single Family Home

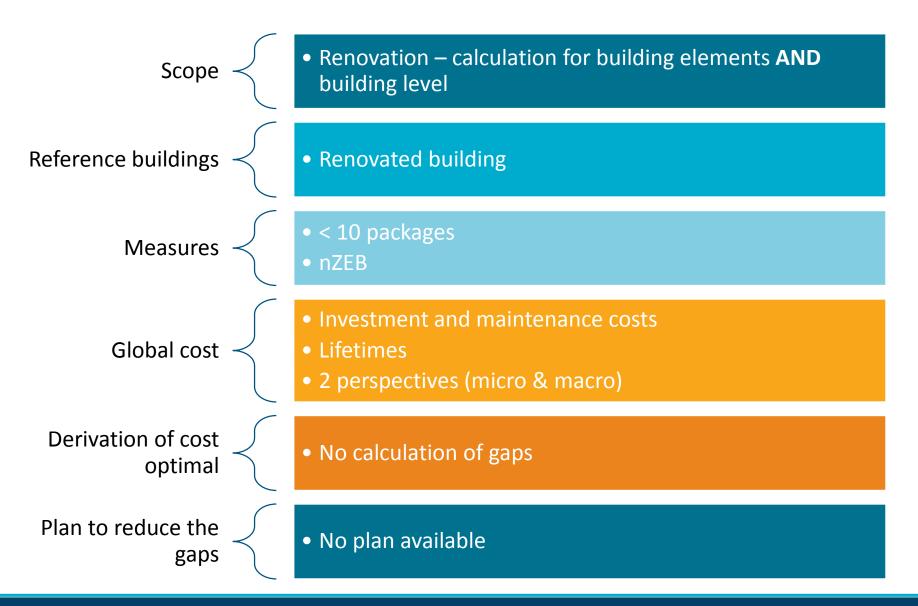
- Global costs for SFH
- All heat supply systems
- High energy price development
- Discount rate 1 %



Example Belgium

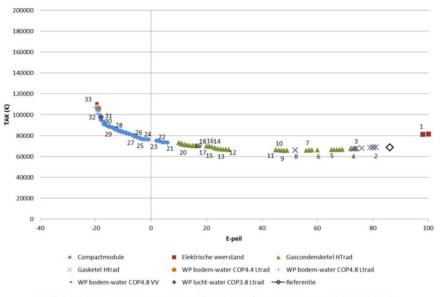

- Optimisation calculation for a residential unit different combinations micro and macro, with and without subsidies
- Calculations from private and macroeconomic perspectives lead to the same cost-optimal point, yet to lower global costs

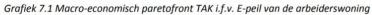
Assessment of cost optimal calculations in the context of the EPBD (2015)

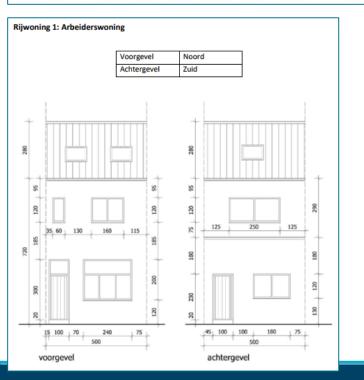


Overview of the conformity of the country reports per category after the final assessment

Overview of main issues

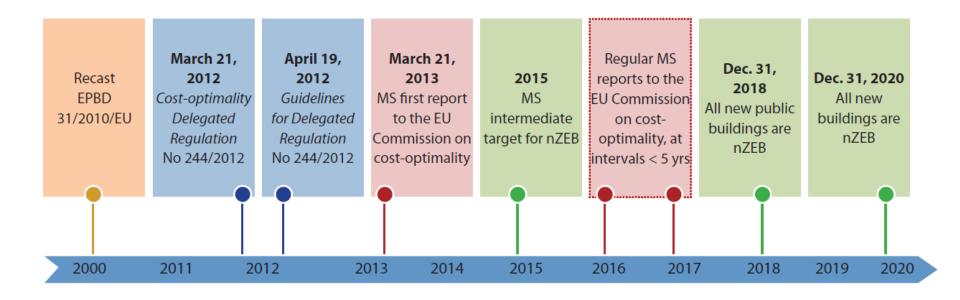



@BPIE_eu


Thank you...

Maarten De Groote maarten.degroote@bpie.eu

WWW.BPIE.EU



rinanc	iële parame	cers	Ene	ergetisc	he param	leters	
ТАК	Totale Investering	π	E-peil	K-peil	NEB	PEV	Opmerkingen
€	€	jaar	-	-	kWh/m²j	kWh/m²j	
							referentie : Uvoorgevel = 0.85, Uachtergevel = 0.24,
							Udaken = 0.24, Vloer grond - kelder = 0.68-0.78, Upro
							= 2.2, Uglas = 1.1, v50 = 5h ⁻¹ , ventilatiesysteem C1,
68897	36543	0	86	55	85	147	gasketel met HT radiatoren en een geiser
							(1) = referentie + Uachtergevel = 0.20 + Uhellend dak
							0.20 + Uvloer kelder = 0.13 + ventilatiesysteem C3 ma
80973	35509	1	98	49	55	167	elektrische verwarming
68691	37477	6	81	55	78	138	(2) = referentie + ventilatiesysteem C2
67554	38409	7	73	55	78	125	(3) = (2) + gascondensatieketel
67307	38558	8	73	49	68	124	(4) = (1) + gasketel
66435	39490	9	66	49	68	113	(5) = (4) + gascondensatieketel
66346	40735	10	60	52	59	102	(6) = (3) + ventilatiesysteem C3 maar Uprof = 0.26
66087	41271	11	57	49	55	97	(7) = (5) + ventilatiesysteem C3
							(8) = (7) + Uvoorgevel = 0.20 + Uhellend dak = 0.16 +
							Uvloer kelder = 0.10 + Uglas = 1.0 + v50 = 3.00 maar m
65925	46123	20	52	39	41	88	een gasketel
65706	47055	20	48	39	41	81	(9) = (8) + gascondensatieketel
66323	48402	21	45	35	37	76	(10) = (9) + Uprof = 1.40 + Uglas = 0.50
							(11) = (9) + Uhellend dak = 0.13 + Uprof = 1.50 + Uglas
66433	48436	21	45	36	37	76	0.60 + ventilatiesysteem C4 maar Uvloerkelder = 0.13
66535	54784	22	28	39	41	47	(12) = (9) + 2.5kWp
67152	56131	23	25	35	37	42	(13) = (10) + 2,5kWp
67472	56577	23	24	35	35	41	(14) = (13) + ventilatiesysteem C4
68279	57195	24	23	35	32	39	(15) = (13) + ventilatiesysteem D5
68328	57335	24	23	34	32	39	(16) = (15) + Uhellend dak = 0.13 maar Uvloerkelder =
69618	58654	26	21	35	30	36	(17) = (14) + ventilatiesysteem Dwtw3
69979	59268	26	20	34	28	34	(18) = (16) + ventilatiesysteem Dwtw4
70216	59803	25	17	39	41	28	(19) = (12) + 5kWp maar Uglas = 1.10
71121	61617	26	13	35	35	21	(20) = (14) + 5kWp
							(21) = (9) + compactmodule + warmtepompboiler +
73194	63639	34	6	39	37	10	ventilatiesysteem D5 + 5kWp
73156	63668	28	10	35	30	16	(22) = (15) + 5kWp + ventilatiesysteem Dwtw3
							(23) = (18) + compactmodule + ventilatiesysteem Dw
74810	66380	35	2	34	30	3	+ 5kWp
76152	70983	38	-1	29	25	0	(24) = (21) + Uhellend dak = 0.13 + Uvloer grond = 0.16
							(25) = (24) + Uachtergevel = 0.16 + Uplat dak= 0.13 +
77707	74837	40	-4	23	18	-7	Uvloer grond = 0.13 + Uprof = 1.40 + Uglas = 0.50
79536	76690	41	-6	23	14	-10	(26) = (25) + ventilatiesysteem Dwtw4
							(27) = (25) + Uvoorgevel = 0.10 + 20% extra opengaan
80943	78992	42	-7	20	14	-12	ramen
84376	82560	46	-11	23	16	-19	(28) = (26) + ventilatiesysteem Dwtw3 + zonneboiler
87648	86714	48	-14	20	12	-23	(29) = (27) + ventilatiesysteem Dwtw3 + zonneboiler
							(30) = (28) + Uvoorgevel = 0.10 + Uplat dak = 0.10 +
							Uhellend dak = 0.10 + Uprof = 0.90 + ventilatiesysteen
91948	92341	52	-17	18	9	-28	Dwtw4+zonneboiler-XL+20% extra opengaande ran
							(31) = (30) + Uvloer grond = 0.10 + 30% extra opengaa
97463	97615	57	-18	18	8	-30	ramen + WP lucht-water COP3,8 Ltrad
100133	102142	60	-19	18	9	-31	(32) = (30) + WP bodem-water COP4,8 Ltrad
							(33) = (31) + v50 = 1.00 + WP bodem-water COP4,8 me
111179	114369	70	-20	18	6	-33	vloerverwarming

Implementation timeline

Considering the multiple benefits?

Economic Stimulus

Health, wellbeing & productivity

Energy System Benefits

Increased performance

The Buildings Performance Institute Europe

European not-forprofit think-tank Promotes policies and support instruments to increase the energy performance of buildings

In operation since 2010

Brussels, Bucharest, Berlin and Warsaw Knowledge, policy, implementation