Western Balkan Gas Infrastructure Workshop

Gas to Power Phase 2 – IAP Feasibility

Vienna, 24 May 2018

Project managed by the World Bank
Background, objectives and ECA introduction

- Word Bank led study with WBIF financial support
- Follow up on the findings made in Phase I of revisiting of SEE Gas Ring with the objective to

Review of the economic and commercial feasibility of the Ionian-Adriatic Pipeline (IAP)

- ECA - multi-disciplinary team including:
 - Fred Beelitz, Gas to power economist ECA
 - Ray Tomkins, Electricity market expert ECA
 - Naske Afezolli, Albanian and regional energy market expert, IA SEE
 - Scott Edmonds, Energy Economist, ECA
 - Mike Madden, pipeline engineer, ECA Associate

Economic Consulting Associates is a specialised electricity and gas economic consultancy based in London, UK. Practice areas in gas include:

- Pricing
- Regulatory economics
- Midstream gas economics incl. LNG
- Long term gas strategies – Masterplans
- Market design
- Sector restructuring
- Gas to power integration

www.eca-uk.com
IAP’s strategic importance – a key channel for Caspian gas to Central Europe

- 5 Bcm/y pipeline with tie in points in AL, ME, HR, BiH and possibly Kosovo
- Supported by WBIF *(Feasibility Study in 2014; current study on ME and AL sections)*
- Project Company to be established in 2018 *(SOCAR as engineering consultant)*
- IAP’s strategic importance:
 - Can play a pivotal role for *gasification of West Balkan region*
 - Can be considered part of the *EU’s Southern Gas Corridor*
 - Can support *decarbonisation of West Balkans*
 - With TAP expansion to 20 Bcm, can support *EU supply diversification*
Key drivers for the development of IAP

- **Croatia as anchor offtake market**
 - Only established and sizable gas market connected to IAP
 - IAP as diversity and security of supply option for Croatia

- **Expansion of TAP and access to wider gas sources**
 - 90% of TAP already contracted for the Italian market – expansion to 20 BCM is a precondition for IAP
 - Other supply sources (Iran, Iraq, Kurdistan) or SOCAR Azeri gas needed

- **International transmission through Croatia**
 - Prohibitively high tariffs required if IAP does not serve gas beyond Croatia
 - Planned Croatian transmission strengthening by Plinacro

- **Gasification strategies of Albania, Montenegro, and BiH**
Total potential throughput as estimated by ECA

- Higher short-medium-run demand than FS due to transit flows

- High dependence on Croatian demand and transit flows in short-run

- Optimistic cases see IAP’s 5 BCM capacity reached by 2040
Approach to tariff analysis – three separate business models

Business model ❶

IAP Company

- Project treated as a standalone
- IAP Company develops, owns and operates the pipeline
- One cost recovery tariff applies for the whole pipeline on the basis of a regulated return
- Postage stamp tariff

Business model ❷

Regulated TSO

- IAP split in three segments
- Each segment developed and financed by national TSOs.
- Tariffs apply that are in line with national regulated transmission tariffs
- IAP segments integrated into national networks

Business model ❸

AL-ME as IAP Company + HR section as regulated TSO

- Combination of ❶ and ❷
- Croatian segment integrated in Croatian asset base
- Segments in ME and AL combined as a ‘small IAP’ and treated as standalone
- Tariff in Croatia based on existing tariff regime
- Tariffs for AL-ME section: postage stamp cost recovery
Integrating IAP with the Southern Gas Corridor will ensure viability

- **Cost recovery tariffs for IAP would need to be high**
 - not unusual for international pipeline projects
 - Low throughput volumes - Offtake markets along its route alone are too small

- **Integrating project with Southern Gas Corridor ensures viability**
 - International transmission of Caspian gas to European markets will be key
 - Takes advantage of TAP and of possible capacity expansion to 20 Bcm

- **Project is economically feasible**
 - Economic NPV: €1.3 billion
 - CO2 reduction from switching to gas for heating is key driver
Conditions that can ensure feasibility of IAP (1/2)

1. Secure throughput for IAP in short term
 - Strengthen Croatian transmission (to max south-north transit)
 - Ensure TAP capacity expansion to 20 Bcm
 - Ensure significant volumes of Croatia’s demand is met by IAP (Between 40% and 50% of demand)
 - Expedite gas to power developments in Montenegro, Croatia, Albania and BiH (~1.5 GW extra capacity until 2025)
 - Accelerate gasification efforts of distribution consumers in Montenegro, Albania and BiH

2. Provide grant funding
 - Grant funding needs to ensure competitive transmission tariff: 60% (~€370 million)
 - Could be partially covered by WBIF and CEF, however gap remains

3. Apply tariff minimising business model
 - Split the CAPEX treatment of the project:
 - Croatian segment integrated into Plinacro’s asset base
 - AL-ME section as an international pipeline
 - Does not require separate development, but only applies for tariffication purposes
Conditions that can ensure feasibility of IAP (2/2)

4. Facilitate financability of the project

- Provide *regulatory exemptions*

- **Attract investors** that would see IAP as part of a portfolio
 - IAP on its own does not need to generate high returns, but can be considered as a means to attract higher returns ‘downstream’
 - Involve *Caspian and Middle Eastern gas suppliers* could act as project sponsors

- Ensure high **equity portion** of the investment

- Provide *concessionary loans* with low interest rates reducing the debt repayment obligation
Summary points for IAP feasibility

- **IAP should be seen as an integrated project with Southern Gas Corridor**
 - International transmission of Caspian gas to European markets will max short term throughput
 - Takes advantage of TAP and of possible capacity expansion to 20 Bcm
 - Feasible together with Croatia LNG (seasonal vs. anchor load)

- **Suitable business model and project sponsors can improve economics**
 - Business model **3** yields lowest tariff
 - Upstream producers as project sponsors considering IAP a strategic investment

- **Feeder connections to BiH and Kosovo can reduce tariffs further**

- **EU support will be important driver for success**
 - Grant funding requirements vary between 0% and 60% depending on throughput
 - Key question 1: *How important is gas for path of decarbonisation for West Balkans?*
 - Key question 2: *How important is IAP for diversity of supply for the EU?*
Fred.Beelitz@eca-uk.com

Managing Director, ECA
Background slides
Transit beyond Croatia is key for IAP to be viable – IAP to form part of the Southern Corridor

1. Can sufficient transit be secured to bridge low initial offtake from West Balkan markets?
 - Transit to overcome initial phase of very low throughputs
 - Possible offtake markets: Hungary (9 Bcm/y), Slovenia (1 Bcm/y), Austria (9 Bcm/y) and CEGH
 - Offtake will depend on IAP tariffs and ability to compete with existing suppliers
 - Displacing existing supplies however will take more than just low prices

2. Can transmission bottlenecks in Croatia be overcome?
 - Plinacro does not perceive this to be a problem
 - Existing connection to Hungary would be sufficient for exports up to 3 Bcm/y – this is even strengthened with LNG development package
 - To Slovenia, €60 million additional investment is needed

3. Can IAP supplied gas compete on Central European Gas Hubs?
 - This will crucially depend on the IAP transmission tariff
 - We use the combined Italian and Slovenian transmission tariffs as comparator
 - Uncertainty of IAP tariff and possible offtake means that we have treated international transit as a sensitivity parameter
IAP offtake potential along IAP route is small –
Will depend on gasification policies

- Main potential offtakers (power + industry) covered by TAP
 - IAP throughput depends on distributed users in northern part
 - Very limited short-run demand

- Montenegro demand can be fully covered by IAP
 - Offtake will depend on gas to power strategy
 - Overall, small demand potential

- Largest potential offtake market
 - Gas on gas competition will require competitive IAP supply
 - Stagnant gas demand since 2009 (~3 Bcm)
 - Gas to power plans have stalled

- Highly uncertain, as no gasification plans
 - Gas to power potential could provide necessary anchor load
 - Uncertainty around gas to power plans
 - Treated as a separate sensitivity in our study
Combination of ME-AL as standalone and the HR segment integrated yield lowest tariffs

- **All business models above critical threshold level of 1.9 €c/cm**
 - Based on combined Italian and Slovenian transmission tariffs
- **Small IAP yields lowest tariffs**
 - Despite additional Croatian investments assumed for northern
- **Regulated TSO worst outcome**
- **BM ❸ implies that non-IAP consumers in Croatia subsidise the Croatian segment**
Sensitivity – tariffs only fall under the threshold level under the most optimistic of cases

Tariffs with CAPEX variation

Tariff only sufficiently low if CAPEX assumed to be 30% lower and assuming the most optimistic demand scenario

Under Base Case, CAPEX would need to be 60% lower

Tariffs with rate of return variation

Tariff low enough under high throughput and 5-6% rate of return scenarios

But setting 5-6% rate of return gives IRR below 2%
Sensitivity – Additional interconnector to BiH can make a difference, less so for Kosovo

Tariffs with BiH interconnector

Tariff becomes competitive in the most optimistic BiH gas demand scenarios and most optimistic other throughput scenarios

Tariffs with Kosovo Interconnector

Kosovo demand would only be significant if coal fired power generation is replaced by gas - unlikely
IAP is economically viable – CO2 reduction from switching to gas for heating is key driver

- Economic NPV: EUR 1.1 billion
- Remains positive across different sensitivity analyses
- Key driver: environmental benefits from switching to gas through Co2 reduction

Approach

1. NPV of avoided cost of gas to power
 - Displaces coal fired power generation

2. NPV of gas used for heating
 - Separate calculations for the displacement of fuel oil, coal, wood fuel and electricity

3. NPV of transit revenue
 - Transit tariff calculated as cost recovery tariffs

4. NPV of total infrastructure cost
 - As estimated in the previous sections and the Gas Masterplans

Economic NPV of IAP