Security Coordination Centre Itd. Belgrade

SCC – Present and future

Duško Tubić SCC Director

SoS, SG for Electricity Vienna, December 13, 2016

Table of content

PART 1 – SCC

- Brief company history
- Services
- Application and Specialized Tools
- Future development

Brief company history

- Region of SEE was not covered by existing RSC(I)s (TSCNET, CORESO).
- Following the form defined by ENTSO-E's Policy Paper "Core strategy for TSO Coordination" and European NC/GL, SEE TSOs recognized the need for regional cooperation.
- April 2015: EMS, CGES and NOSBiH established SCC as the first RSC(I) in SEE, based in Belgrade.
- Ist of August 2015: SCC started operational activities.

Services

- Services and main activities:
 - 1. Validation of DACF and IDCF Continental Europe (CE) IGMs/creation and delivery of CE CGMs
 - 2. N-1 security analysis for TSOs founders of SCC
 - 3. Test Run of daily NTC Calculations for TSOs founders of SCC
 - 4. Contribution to SEE Maintenance Group through model creation and N-1 security analysis
 - 5. Participation in ENTSO-E projects SMTA & OPC

Additional services

- SCC is open to provide additional services to TSO members as well as to other parties like ENTSO-E.
- The example of such a service is analysis of loop flow indicators for Continental Europe based on PTDF data for 2015, on an hourly resolution (for bidding zone and country levels) done for ENTSO-E upon their request.

Application and Specialized Tools

TNA (Transmission Network Analyzer)

QAS Portal (Quality Assessment Service)

Future development

- **SCC** plans to develop the following services:
 - Upgrade of software tools for IGM validation and CGM merging process according to latest ENTSO-E EMF (European Merging Function) requirements.
 - Extension of Security analysis with Remedial actions functionality,
 - Coordinated Capacity Calculations,
 - Outage Planning,
 - System Adequacy Assessment.

Upgrade of SW for IGM validation and CGM creation according to EMF

- All RSCs have to upgrade their software according to ENTSO-E EMF requirements
 - Core functions required for IGM and CGM validation and merging already supported by TNA tool
 - CGMES compliant tool (import and merge supported)
 - Upgrade of validation according to ENTSO-E QoD for CGMES in progress
 - Non-functional EMF requirements will be implemented within the project that is scheduled to start in the beginning of 2017
 - Additional requirements will be also implemented within same project

SCC

Security analysis including Remedial Actions

- Actual practice in SEE: Remedial Actions are agreed upon on bilateral agreement between TSOs.
- Different models of security analysis that include RA are being used in Coreso and TSCNET.
- ENTSO-E activities towards defining of Pan-European Remedial Action coordination process.
- Necessary close cooperation among all RSCs and especially between neighboring RSCs.

OPC – From SEE to Pan-European concept

Concept before 2016

-Based on expert's experiences

- -Security analysis:
- during preparation of Annual Maintenance Plan
- if some important changes happen (in relation to Annul Plan)

SEE TSOs

Concept in 2016

-Based on expert's experiences -Security analysis:

 during preparation of Annual Maintenance Plan

-Regular N-1 security analysis performed by SCC

Future Concept

-SEE OPC based on uniform Pan-European OPC concept and common SW

Short and Medium Term Adequacy (SMTA) – Dry Run

12/13/2016

Table of content

PART 2 - COORDINATING CAPACITY CALCULATION

- EC Regulations
- Regions for Coordinating Capacity Calculation (CCC)
- Methods of Capacity Calculation
- CCC in SEE region
- CCC in SCC
- CCC- SCC possibilities and next steps
- Conclusion

EC Regulations

EC Regulations

Capacity Allocation and Congestion Management (CACM)

Subject matter and scope

This Regulation lays down detailed guidelines on cross-zonal capacity allocation and congestion management in the day-ahead and intraday markets, including the requirements for the establishment of common methodologies for determining the volumes of capacity simultaneously available between bidding zones, criteria to assess efficiency and a review process for defining bidding zones.

Forward Capacity Allocation (FCA)

Subject matter and scope

This Regulation lays down detailed rules on cross-zonal capacity allocation in the **forward markets**, on the establishment of a **common methodology to determine long-term cross-zonal capacity**, on the establishment of a single allocation platform at European level offering long-term transmission rights, and on the possibility to return long-term transmission rights for subsequent forward capacity allocation or transfer long-term transmission rights between market participants.

- ✤ ACER has defined CCRs (November 17, 2016), following should be pointed out:
 - CCR 3: Core (merging of CWE and CEE CCRs into one CCR)
 - **CCRs shall include a bidding zone border** between Germany/Luxembourg and Austria in defining the bidding zone borders

Regions for Coordinating Capacity Calculation

Coordinating Capacity Calculation in SEE

- Specificity of SEE:
 - EU TSOs (mandatory implementation of CACM and FCA)
 - NON-EU TSOs ("early implementation" of CACM and FCA?)
- SEE Coordinated Capacity Calculation methodology and business process

 to be defined and developed.
- Cooperation between SEE RSCs is necessary.
- Coreso and TSCNET future common Coordinated Capacity Calculations for Core CCR (based on MoU of CWE and CEE TSOs) could be an example for SEE

12/13/2016

Methods of Capacity Calculation

- NTC(ATC)-based calculation and allocation is widely applied across Europe (in SEE at all borders)
- Flow-based approach is the main future option for strongly meshed grids (as Continental Europe is, including SEE)
- Flow-based calculation and FB-Market Coupling applied in Central West Europe since May 2015
- Further spreading FB approach is expected

Methods of Capacity Calculation

NTC, i.e. ATC-based: single program constraint per border for commercial transactions

Flow-based (PTDF/MF): set of physical constraints MF per network elements, and sensitivity factors (PTDF)

Coordinating Capacity Calculation in SCC

- Test run process on NTC capacity calculation is being performed every Monday on D2CF models of SEE region for Wednesday.
- Results of NTC calculation is delivered to TSOs.
- Aim is gaining of experience for this process

Coordinating Capacity Calculation in SCC

- SCC has aplication software for NTC (Y/M) and NTC for day-ahead allocation, tailored to D-2 calculation process (automated calculation for 24 hours)
- SCC is testing 24 hours automatic NTC calculation, for all borders of SCC TSOs
- SCC has application software for Flow-based capacity calculation solution

SCC – 24h automatic NTC calculation

Date: 05-Oct-16	Export Areas	RS RS	Imp	ort Are	as: BA	, HR																							
Hour:		01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24				
Step size:		50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	75	75	75	50	60		Apply to all	Legend	
nitial ΔE:		50	50	50	50	50	50	50	50	50	50	50	50	50	50	200	50	50	50	50	50	50	50	50	50	i i i	Apply to all	PR - Proportiona	al To Re
xport Method:		PR	PR	PR	PR	PR	PR	PR	PR	PR	PR	PR	PR	PG	PR	PR	PR	PG	PR	PR	PR	PR	PR	PR	PR	-	Apply to all	DG Dreportion	
mport Method:		PR	PR	PR	PR	PR	PR	PR	PR	PR	PR	PR	PR	PG	PR	PR	PR	PG	PR	PG	PR	PR	PR	PR	PR	-	Apply to all	PG - Proportion	I TO EN
port Max availab	le:	1117.	1219.(1219.	(1249.	. 1241.	1206.	5 1119.4	1044.4	884.7	864.8	844.8	834.0	862.6	912.5	905.5	925.4	904.7	902.7	878.0	665.0	675.9	826.6	943.9	982.0			PC - Proportiona	il Io K
port Max availab	ole:	665.0	639.0	619.0	619.0	619.0	660.0	867.0	977.0	1093.0	1158.	1173.	1168.0	1108.0	1153.0	1186.0	1216.0	1186.0	1176.0	1196.	(1311.(1266.0	1148.0	997.0	815.0			GS - Generation	Shift Li
mit:		1000	1000	1000	1000	1000	1000	1000	1000	900	1000	1000	1000	1000	1000	1000	1000	1500	1000	1500	1000	1000	1000	1000	1000		Apply to all		
ont:		\checkmark	√	√	\checkmark	\checkmark	√	\checkmark	√	√	√	√	√	√	1	√		1	√	√	√	√	1	√	1				
lon:		\checkmark	\checkmark	_√	\checkmark	\checkmark	\sim	\checkmark	\checkmark	\checkmark	\checkmark	√	_√	√	\checkmark	_√	√	√	√	_√	√	√	√	\checkmark	√				
		Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Start All			
		Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Stop All			
ep No.:		14/20	13/20	13/20	13/20	13/20	14/20	18/20	20/20	18/18	18/20	17/20	17/20	20/20	19/20	19/20	19/20	30/30	19/20	18/30	9/14	10/14	12/14	19/20	14/17				
E:		665.0	639.0	619.0	619.0	619.0	660.0	867.0	977.0	884.7	864.8	844.8	834.0	1000.0	912.5	905.5	925.4	1500.0	902.7	877.9	665.0	675.9	826.6	943.9	815.0				
'F:		420.3	334.4	315.8	305.0	314.6	324.9	652.2	779.1	749.0	753.6	761.3	808.5	934.5	856.9	814.1	815.5	1182.6	911.8	759.8	713.0	766.2	739.4	543.5	487.5				
o. Crit. outages (Crit. overloads:	010	010	010	010	010	010	211	5211	812	812	912	13 2	2712	2114	812	812	3517	2515	311	211	18 1	211	010	010				
lax loading:		0	0	0	0	0	0	112.24	124.2	130.24	129.1	130.1	135.66	155.97	138.31	131.44	130.92	174.85	142.5	120.4	120.44	123.95	118.37	0	0				
ep-accepted:		0/20	13/20	13/20	13/20	13/20	14/20	18/20	20/20	18/18	18/20	17/20	17/20	20/20	19/20	19/20	19/20	30/30	19/20	18/30	9/14	10/14	12/14	19/20	14/17				
Emax:		0.0	639.0	619.0	619.0	619.0	660.0	867.0	977.0	884.7	864.8	844.8	834.0	1000.0	912.5	905.5	925.4	1500.0	902.7	877.9	665.0	675.9	826.6	943.9	815.0				
TF:		122.1	46.5	36.4	24.0	34.1	26.6	277.7	356.7	371.1	386.0	401.6	452.5	445.9	470.1	438.2	433.4	469.3	537.1	400.3	/128.7	/971	200.1	1/0.8	1275				
TF:		122.1	334.4	315.8	305.0	314.6	324.9	652.2	779.1	749.0	753.6	761.3	808.5	934.5	856.9	814.1	815.5	1182.6	911.8	7 Sc	enario	: 201	61116	NTC	Mode	1: 20161	.116_1030_	FO3_UX0	
BCE:		122.1	46.5	36.4	24.0	34.1	26.6	277.7	356.7	371.1	386.0	401.6	452.5	445.9	470.1	438.2	433.4	469.3	537.1	4-AI	l expoi	rt area	s			Exp	ort method	ls:	
TRM: Calculated		paramete		1	1	1	1	1	1			۱.,	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1			nelude				Proportiona	al To Reserve (dPg)	
TC:												1.	1286.5	1445.9	1382.6	1343.7	1358.7	1969.3	1439.8	1	Area .	-	nciude	-		0	Proportions	al To Engagement	
TC:	NTC		112	2.0	[MW]] TT	С		2	12.0	[MW	/] [1186.5	1345.9	1282.0	1243.7	1258.7	1869.3	1339.8	1	-								rgi
FF RS-BA:		_		_								,	382.4	460.4	407.5	421.8	428.4	683.9	453.3	3 A		_		_			roportiona	al lo K	
TF RS-HR:	NTF	-287.99		.99	[MW] TTF		F		-123.66		[MW]		426.2	474.1	449.4	392.3	387.0	498.8	458.5	3 B	A					Generation Shift Lists			
TC RS-BA:								_					561.1	663.1	609.9	644.4	661.3	1080.9	666.1	6 B	G			_					
ITC RS-HR: BCE			-288	8.0	[MW]] TR	M		1	0.00	[MW	/] 🗍	625.4	682.9	672.7	599.3	597.4	788.3	673.7	5 G	iR					Are	a Node (Code Pg [MW]	dP
		_		_								-	Details	Details	Details	Details	Details	Details	Details		IR			_		RS	JTENTB	11 490	
	DEmax		500	0.0	[MW]] DF	max		164	4.33	[MW	/]	Jecans	Jecans	Jecans	- Jecans	Details	- Secans		E H	IU					RS	JTENTB	12 580	_
				_																N	/IE					DC	ITENITA	12	_
	PTDFbase	9	99.996	88	[%]	PT	DFma	x	-58.33	008	[%]									N	/K					1.5	JIENIA	246	
																				R	0					RS	JTENTA	23 238	

SCC 🤝

Capacity Calculation – SCC possibilities and next steps

- In cooperation with its TSOs, SCC is developing application software for automatic deployment of Remedial Actions into contingency analyses and NTC calculation
- SCC is prepared and ready to start providing its services as Capacity Calculation Calculator when requested by potential users
- Especially, time-demanding 24xNTC processes is suitable to be transferred to RSC
- SCC is ready to cooperate with other RSC(I)s on regional as well as on pan-European level
- SCC has skilled personnel constantly in cooperation with TSO experts
- Next steps awaiting TSOs decisions and requests

Conclusion

- SCC has developed procedures and tools, and trained engineers to perform capacity calculations for TSOs both:
 - NTC-based (as currently applied in SEE)
 - and Flow-based (as obvious target model)
- SEE Coordinated Capacity Calculation methodology and business process have to be defined and developed.
- There is need for close cooperation between SEE TSOs and RSCs.
- TSOs, ENTSO-E, EnCS, SEE CAO and RSC(s) can jointly facilitate further development and coordination of Capacity Calculation and Allocation procedures in SEE

Thank you for your attention!

- Security Coordination Centre SCC Ltd. Belgrade
- Vojvode Stepe 412
- 11000 Belgrade, Serbia
- Phone: +381 11 3972 943
 - +381 11 3972 944 +381 64 6496 694
- E-mail: <u>info@scc-rsci.com</u> <u>operator@scc-rsci.com</u>
- Web: <u>www.scc-rsci.com</u>

