

Selection of Projects of Energy Community Interest (PECIs)

2nd Meeting of Electricity and Gas Groups

Presentation REKK / DNV GL

Vienna 08.04.2016

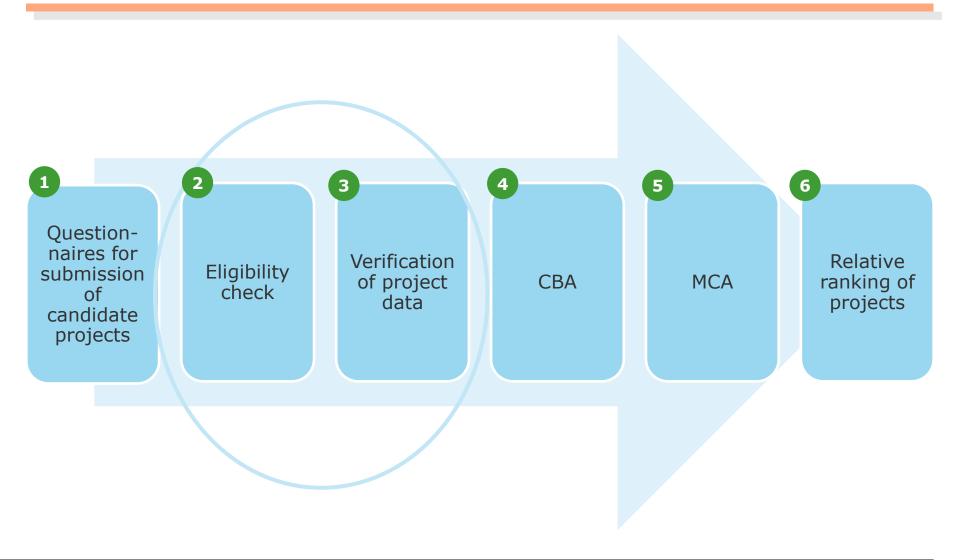
Agenda

1. Project Timeline

- 2. Screening of Submitted Project Proposals
 - a) Eligibility
 - b) Verification
- 3. Overview on Final Assessment Methodology
- 4. Overview of Electricity Network Model
- 5. Cost Benefit Analysis for Electricity

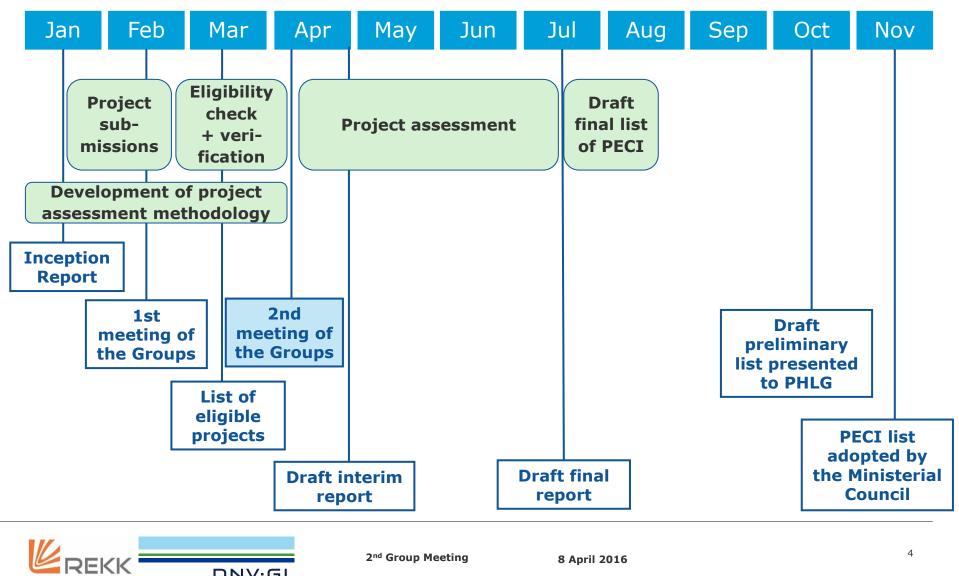
Specification of reference scenarios and presentation of example project evaluation

6. Cost Benefit Analysis for Natural Gas


Specification of reference scenarios and presentation of example project evaluation

7. Multi-criteria Assessment Methodology

Presentation of example project evaluation



Project Workflow

Project Timetable

DNVGL

Agenda

- 1. Project Timeline
- 2. Screening of Submitted Project Proposals
 - a) Eligibility
 - b) Verification
- 3. Overview on Final Assessment Methodology
- 4. Overview of Electricity Network Model
- 5. Cost Benefit Analysis for Electricity

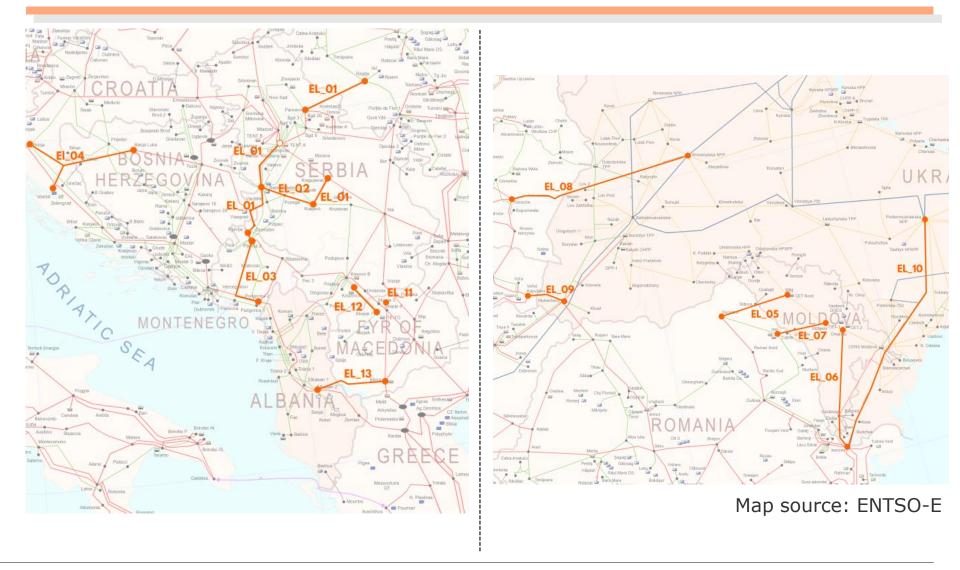
Specification of reference scenarios and presentation of example project evaluation

6. Cost Benefit Analysis for Natural Gas

Specification of reference scenarios and presentation of example project evaluation

7. Multi-criteria Assessment Methodology

Presentation of example project evaluation


Projects submitted by categories

	Electricity trans- mission	Electricity storage	Gas trans- mission	Gas Storage	LNG	Smart Grid	Oil	Total
Submitted projects	13	0	16	0	1	2	1	33
Eligible projects	10-12?	-	16	-	1	0	1	29
Project data verified by 1 April 2016	9	-	5	-	0	-	1	tbc
Submitted investment cost	Ca.1200 million €		Ca. 2350 million €				490 million €	Ca.4040 million €

- Out of the 33 submitted projects two electricity and two smart grid projects did not meet the criteria of the adopted Regulation
- All gas projects and the only oil project submitted qualified for further evaluation and data verification.
- Submitted investment CAPEX for all projects: 4000 million €, more than half of it goes to gas infrastructure. (For comparison: in 2013 there were 85 projects with a total CAPEX of ca 25.000 million €. Note: electricity generation is not eligible this time, and from Croatia there was only IAP submitted)

Location of Submitted Electricity Projects

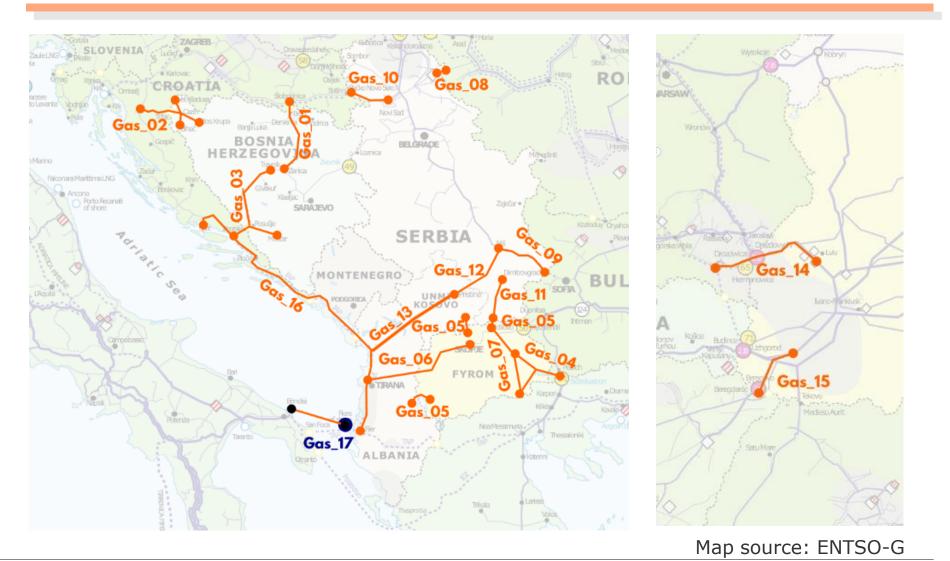
Eligibility Check Based on Adopted Regulation (1)

Project code	Project name	Infrastructure	Crossing border of two CPs or MSs	Capacity over 500 MW	Candidate for (PECI/PMI/NO)
el_01	Transbalkan corridor phase 1	\checkmark	\checkmark	\checkmark	PECI
el_02	Transbalkan corridor phase 2, 400 kV OHL Bajina Basta Kraljevo 3	\checkmark	?	?	PECI
el_03	TransBalkan Electricity Corridor, Grid Section in Montenegro	\checkmark	\checkmark	\checkmark	PECI
	Interconnection between Banja Luka (BA) and Lika (HR) with Internal lines between Brinje, Lika, Velebit and Konjsko (HR) including substations	\checkmark		\checkmark	PMI
el_05	Power Interconnection project between Balti (Moldova) and Suceava (Romania)	\checkmark	\checkmark	\checkmark	PMI
el_06	B2B station on OHL 400 kV Vulcanesti (MD) Issacea (RO) and new OHL Vulcanesti (MD) Chisinau (MD)	\checkmark	\checkmark	\checkmark	PMI

Eligibility Check Based on Adopted Regulation (2)

Project code	Project name	Infrastruc- ture	Crossing border of two CPs or MSs	Capacity over 500 MW	Candidate for (PECI/PMI/NO)
el_07	Power Interconnection project between Straseni (Moldova) and Iasi (Romania) with B2B in Straseni (MD)	\checkmark	\checkmark	\checkmark	PMI
el_08	Asynchronous Interconnection of ENTSOE and Ukrainian el. network via 750 kV Khmelnytska NPP (Ukraine) – Rzeszow (Poland) overhead line connection, with HVDC link construction	\checkmark	\checkmark	\checkmark	PMI
el_09	400 kV Mukacheve (Ukraine) – V.Kapusany (Slovakia) OHL rehabilitation	\checkmark	\checkmark	\checkmark	PMI
el_10	750 kV Pivdennoukrainska NPP (Ukraine) – Isaccea (Romania) OHL rehabilitation and modernisation, with 400 kV Primorska – Isaccea OHL construction.	\checkmark	\checkmark	\checkmark	PMI
el_11	400/110 kV Substation Kumanovo	\checkmark	×	×	This project is part of a larger cluster of the current TYNDP – not assessed in PECI
el_12	400 kV interconnection Skopje 5 - New Kosovo	\checkmark	\checkmark	?	PECI
el_13	400 kV Interconnection Bitola(MK)- Elbasan(AL)	\checkmark	\checkmark	200-300 MW?	?

Proposal for Merging Projects


- Project el_01: Transbalkan corridor (Serbian Section) phase one should be clustered with el_03 (Transbalkan corridor grid section in Montenegro)
- Project el_02: Transbalkan corridor (Serbian Section) phase two should be analysed as a dependent project on the Transbalkan corridor (el_01) phase one Serbia + Montenegro section (el_03)
- We need confirmation of the project promoters for this approach

Natural Gas

Location of Submitted Gas Projects

Natural Gas

Eligibility Check Based on Adopted Regulation (1)

Project code	Project name	From country – to country	Infrastruc- ture type	Crossing border of two CPs + MSs	Reverse flow or capacity increase over 10%	Candidate for (PECI/PMI /NO)
GAS_01	Interconnection pipeline BiH- HR (Slobodnica-Brod-Zenica)	BA-HR	\checkmark	\checkmark	\checkmark	PMI
GAS_02	Interconnection Pipeline BiH HR (Licka JesenicaTrzac- Bosanska Krupa)	BA-HR	\checkmark	\checkmark	\checkmark	PMI
GAS_03	Interconnection Pipeline BiH HR (PloceMostarSarajevo / ZagvozdPosusje Travnik)	BA-HR	\checkmark	\checkmark	\checkmark	PMI
GAS 04	Interconnector of Republic of	BG-MK			\checkmark	PMI
GA5_04	Macedonia with Bulgaria and Greece	GR-MK	\checkmark	\checkmark	\checkmark	PMI
		MK-KO*	\checkmark	\checkmark	\checkmark	PECI
GAS_05	Interconnector of Republic of Macedonia with Kosovo,	MK-RS	\checkmark	\checkmark	\checkmark	PECI
	Albania and Serbia	MK-AL	\checkmark	\checkmark	\checkmark	PECI
GAS_06	Infrastructure gas pipeline Skopje Tetovo Gostivar Albanian border	AL-MK	\checkmark	\checkmark	\checkmark	PECI

Eligibility Check Based on Adopted Regulation (2)

Project code	Project name	From country – to country	Infrastruc- ture type	Crossing border of two CPs + MSs	Reverse flow or capacity increase over 10%	Candidate for (PECI/PMI/ NO)
GAS_07	Macedonian part of TESLA	GR-MK	\checkmark	\checkmark	\checkmark	PECI
0/10_0/	project	MK-RS	\checkmark	\checkmark	\checkmark	1 201
GAS_08	Interconnector Serbia-Romania	SB-RO	\checkmark	\checkmark	\checkmark	PMI
GAS_09	Gas Interconnector RS-BG - Section on the Serbian territory	BG-RS	\checkmark	\checkmark	\checkmark	PECI
GAS_10	Gas Interconnector Serbia Croatia	HR-RS	\checkmark	\checkmark	\checkmark	PMI
GAS_11	Gas Interconnector RS-FYROM Section on the Serbian territory	RS-MK	\checkmark	\checkmark	\checkmark	PECI
GAS_12	Gas Interconnector RS-FYROM Section Nis (Doljevac) Pristina	RS-KO	\checkmark	\checkmark	\checkmark	PECI
GAS_13	AlbaniaKosovo Gas Pipeline (ALKOGAP)	AL-KO	\checkmark	\checkmark	\checkmark	PECI
GAS_14	Gas Interconnection Poland Ukraine	PL-UA	\checkmark	\checkmark	\checkmark	PMI
GAS_15	Development of the HU to UA firm capacity	HU-UA	\checkmark	\checkmark	\checkmark	PMI
		AL-ME	\checkmark	\checkmark	\checkmark	DIAL
GAS_16	Ionian Adriatic Pipeline	ME-HR	\checkmark	\checkmark	\checkmark	PMI
GAS_LNG		FSRU-IT	\checkmark	\checkmark	\checkmark	PMI
17	EAGLE LNG and Pipeline	AL-IT	\checkmark	\checkmark	\checkmark	

DNV.GL

Proposal for Merging/Dividing Projects

- GAS05 should be divided up to three distinctive project for the sake of the analysis:
 - GAS05_KO*
 - GAS05_AL
 - GAS05_RS
- GAS11 includes the Serbian part of the GAS05_RS, these projects we would evaluate jointly
- We need confirmation of the project promoters for this approach


Smart Grid Projects – Eligibility

- Overall two Smart Grid projects submitted for PECI 2016
- Both of them have been found non-eligible with a number of criteria set in Regulation (EU) No 347/2013 (Ministerial Council Decision 2015/09/MC-EnC of 16 October 2015)

Eligibility Criteria	SM_01 (Reduction of Grid Losses EVN MK)	SM_02 (Kosovo Smart Meter Project)
Voltage level(s) (kV) above 10kV	Mostly 10kV	35kV and 10(20)kV
Number of users involved more than 50,000	100,000	400,000
Consumption level in the project area equals at least 300 GWh/year	666 GWh/year	4,676 GWh/Year
In terms of capacity, share (%) of energy supplied by non-dispatchable resources levels above 20%	N/A 🔀	N/A 🔀
Involvement of TSOs / DSOs from at least two Contracting Parties	N/A 🔀	N/A 🗙

Submitted Oil Project – Eligibility (1)

Submitted Oil Project – Eligibility (2)

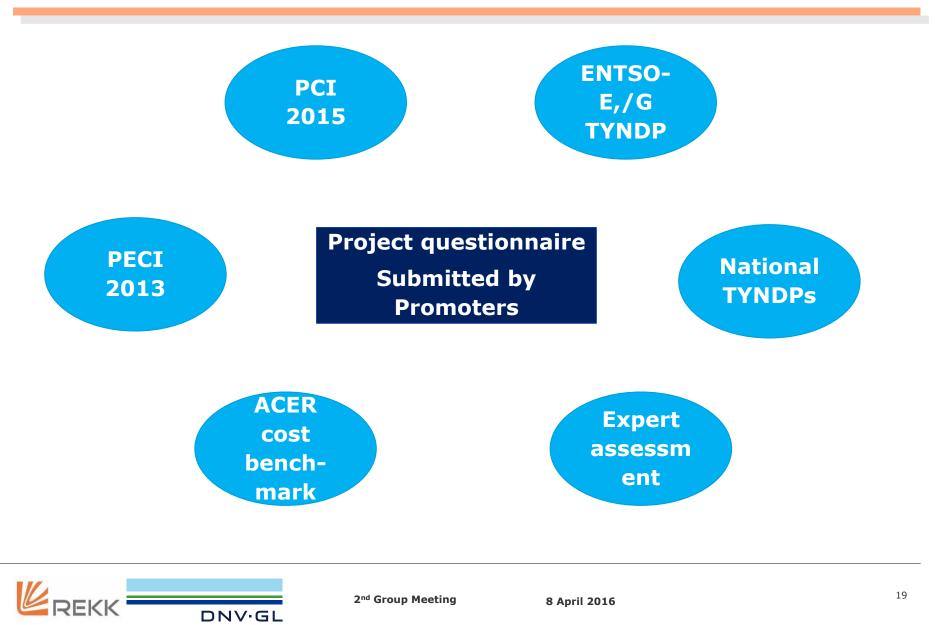
- (a) security of supply reducing single source dependency. The delivery of Caspian and Central Asian crude oil through the Brody Adamowo pipeline will increase security of oil transportation to the countries along the route (Az-Georgia, UA, PL). It will enhance the diversification of supply routes to the EU and Poland by not relying heavily on receiving crude from a single source in the world.
- (b) efficient and sustainable use of resources through mitigation of environmental risks The project contributes to protecting and improving the condition of the natural environment and health by avoiding shipping risks and emissions arising from tanker traffic which would be the transport alternative in case the Brody-Plock pipeline was not realized.
- (c) interoperability Brody Adamowo oil pipeline would ensure continuous oil flows to the depending refineries in case of a supply disruption in the conventional supply route. The Project will provide for integration of Ukrainian oil transportation system with Polish and European ones. The Brody Adamowo oil pipeline creates the possibility to transport the crude oil in reverse mode from Baltic Sea to the consumers in Ukraine, Slovakia and Czech Republic.

Agenda

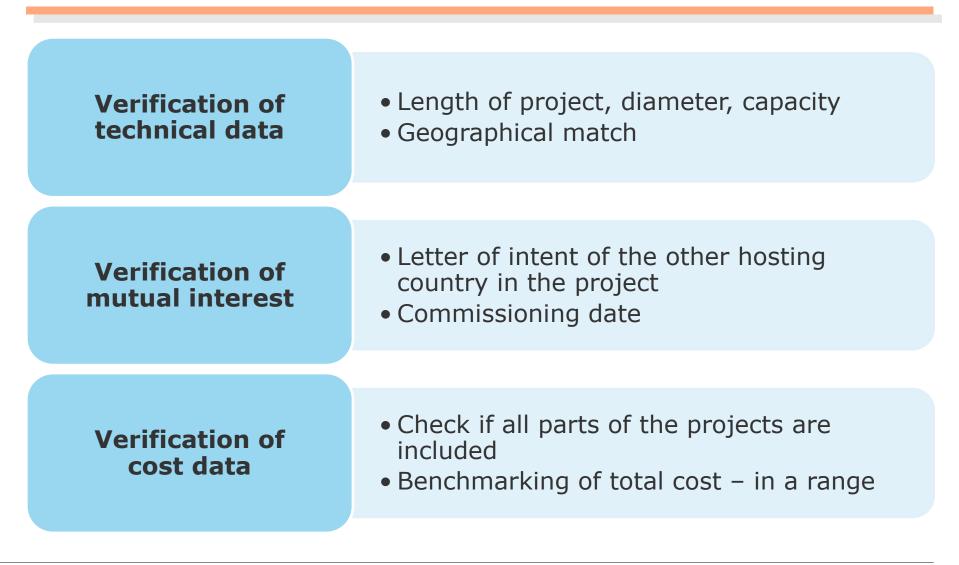
- 1. Project Timeline
- 2. Screening of Submitted Project Proposals
 - a) Eligibility
 - b) Verification
- 3. Overview on Final Assessment Methodology
- 4. Overview of Electricity Network Model
- 5. Cost Benefit Analysis for Electricity

Specification of reference scenarios and presentation of example project evaluation

6. Cost Benefit Analysis for Natural Gas


Specification of reference scenarios and presentation of example project evaluation

7. Multi-criteria Assessment Methodology


Presentation of example project evaluation

Overview on Elements of Verification

General Steps to Verify Project Data

Results of Verification – ELECTRICITY Projects

Technical data verification: all projects ☑

Disclaimer: Two project have a commissioning date beyond 2026. There is no problem to evaluate them, however consideration should be given, that the PECI/PMI list will be updated every 2 year, and projects beyond 10 years time could be submitted at a later phase.

Verification of mutual interest:

- Projects El_01,02,03,04 and El_11,12,13 are included into ENTSO-E TYNDP.
- Projects El_05,06,07 are included in the Romanian TYNDP; El_09 is included in the Slovakian TYNDP ☑
- On El_08: the Polish side does not indicate the planned commissioning year "?"
- On El_10 project there is no decision in Romania and in Moldova about the project "?"

Verification of cost data: all projects (except for one) are in range ☑

Verification of Project Data – as of 01.04.2016 (1)

Project code	Project name	Technical data	From-to	Letter of intent	Cost
el_01	Transbalkan corridor phase 1	\checkmark	RO-RS-BA-ME	\checkmark	\checkmark
el_02	Transbalkan corridor phase 2, 400 kV OHL Bajina Basta Kraljevo 3	?	RS	\checkmark	\checkmark
el_03	TransBalkan Electricity Corridor, Grid Section in Montenegro	\checkmark	RS-ME	\checkmark	\checkmark
el_04	Interconnection between Banja Luka (BA) and Lika (HR) with Internal lines between Brinje, Lika, Velebit and Konjsko (HR) including substations	\checkmark	BA-HR	\checkmark	\checkmark
el_05	Power Interconnection project between Balti (Moldova) and Suceava (Romania)	\checkmark	MD-RO	\checkmark	Above range
el_06	B2B station on OHL 400 kV Vulcanesti (MD) Issacea (RO) and new OHL Vulcanesti (MD) Chisinau (MD)	\checkmark	MD-RO	\checkmark	?
el_07	Power Interconnection project between Straseni (Moldova) and Iasi (Romania) with B2B in Straseni (MD)	\checkmark	MD-RO		?

Verification of Project Data – as of 01.04.2016 (2)

Project code	Project name	Technical data	From-to	Letter of intent	Cost
el_08	Asynchronous Interconnection of ENTSOE and Ukrainian electricity network via 750 kV Khmelnytska NPP (Ukraine) – Rzeszow (Poland) overhead line connection, with HVDC link construction	\checkmark	UA-PL	?	\checkmark
el_09	400 kV Mukacheve (Ukraine) – V.Kapusany (Slovakia) OHL rehabilitation	\checkmark	UA-SK	\checkmark	\checkmark
el_10	750 kV Pivdennoukrainska NPP (Ukraine) – Isaccea (Romania) OHL rehabilitation and modernisation, with 400 kV Primorska – Isaccea OHL construction.	\checkmark	UA-RO	?	\checkmark
el 1	400/110 WSubstation Kurranovo	×	×	X	×
el 2	400 kV interconnection Skopje 5 - New Kosovo	?	МК-КО	×	\checkmark
el_13	400 kV Interconnection Bitola(MK)Elbasan(AL)	\checkmark	MK-AL	\checkmark	\checkmark

Results of Verification – GAS projects

- Joint submissions are rare, but there are a few good examples: e.g. Bosnian projects, IAP, Polish-Ukrainian reverse flow.
- Lots of basic data missing (e.g. on capacity): data request was sent to promoters
- Majority of the interconnector projects were submitted only up to the border: there is a risk of building pipelines that are never commissioned/or only very much delayed
 - Letter of intent from the other hosting party is needed
 - PCI status of the project can be accepted (RS-BG, Macedonian part of the TESLA project) To correctly model Tesla, we will assess the entire project based on PCI 2015.
 - Or if the project is included in the TYNDP of the other hosting country
- Data on planned commissioning date and cost of the other part of the project can come:
 - From the TYNDP of the other hosting party
 - From the other TSO or Ministry (letter of intent)
 - In case there is no cost data, an estimated benchmark cost will be assigned to the other part of the project based on length and diameter of the pipeline

Natural Gas

Verification of Project Data – as of 01.04.2016

Project code	Project name	Technical data	From- to	Letter of intent	Cost	Project code	Project name	Technical data	From- to	Letter of intent	Cost
GAS_01	Interconnection pipeline BiH-HR (Slobodnica-Brod- Zenica)	\checkmark	BA-HR	\checkmark	\checkmark	GAS_09	Gas Interconnector Serbia Bulgaria - Section on the Serbian territory	\checkmark	BG-RS	\checkmark	Only RS cost submitted
GAS_02	Interconnection Pipeline BiH HR (Licka Jesenica- TrzacBosanska Krupa)		BA-HR	\checkmark	\checkmark	GAS_10	Gas Interconnector Serbia Croatia - Section on the Serbian territory	\checkmark	HR-RS	\checkmark	Only RS cost submitted
GAS_03	Interconnection Pipeline BiH HR (PloceMostar- Sarajevo / ZagvozdPosusje	\checkmark	BA-HR	\checkmark	\checkmark	GAS_11	Gas Interconnector Serbia FYROM Section on the Serbian territory	\checkmark	RS-MK	Tbc MK	Only RS cost submitted
GAS_04	Travnik) Interconnector of Republic of Macedonia with Bulgaria and Greece	Basic data missing	BG-MK GR-MK	tbc BG tbc GR	no cost no cost	GAS_12	Gas Interconnector Serbia Montenegro (incl. Kosovo) Section Nis (Doljevac) Pristina		RS-KO	Not support ea	Only RS cost submitted
GAS 05	Interconnector of Republic of Macedonia with	Basic data	MK-KO*	supporte d*	no cost		AlbaniaKosovo Gas Pipeline (ALKOGAP)	Capacity data missing	AL-KO	\checkmark	\checkmark
070200	Kosovo, Albania and Serbia	missing	MK-RS MK-AL	✓ tbc AL	no cost no cost	GAS_14	Gas Interconnection Poland Ukraine	\checkmark	PL-UA	\checkmark	\checkmark
GAS_06	Infrastructure gas pipeline Skopje Tetovo Gostivar Albanian border		AL-MK	tcb AL	Only MK cost submitted	GAS_15	Development of the HU to UA firm capacity	\checkmark	HU-UA	\checkmark	\checkmark
GAS_07	Macedonian part of TESLA project	\checkmark	GR-MK MK-RS	\checkmark	\checkmark	GAS_16	Ionian Adriatic Pipeline	\checkmark	AL-ME ME-HR	\checkmark	Above range
GAS_08	Interconnector Serbia-Romania	\checkmark	RS-RO	Tbc RO	Only RS cost submitted	GAS_LN	EAGLE LNG and	\checkmark	LNG_AL		only the FSRU part was
ER	EKK	DNV·G	i L	2 nd Grou	p Meeting	G_17	Pipeline	V	AL-IT		included int라he cost

Verification of Cost Data

2015 indexed unit investment cost of transmission pipelines commissioned in 2014 (average values)

Pipeline diameter	<16"	16-27"	28-35"	36-47"	48-57"
Average unit cost, real 2015 €/km	643 936	746 801	847 966	1 427 041	2 098 567

Source: ACER

- CAPEX cost for gas projects was cross-checked with ACER's Report On Unit Investment Cost Indicators And Corresponding Reference Values For Electricity And Gas Infrastructure - Gas Infrastructure Annex 2015 real € investment cost (€/km)
- Some projects failed to provide CAPEX figures. If no CAPEX is provided by (date is to be agreed on), ACER report average cost figures will be used for project evaluation.
- Projects that have submitted CAPEX seems generally to be in line with ACER's cost data, some clarifications are needed
- Project promoters have been contacted for clarification and CAPEX data the answers are handled individually due to the sensitivity of the issue

Verification OIL Project Data

- Project is on the 2015 PCI list
- Planned commissioning: 2020 (2019 on the PCI list, end of 2015 on the 2013 PECI list)
- Length of the project: 396.3 km (371 km on the PCI list)
- Cost of the project: increase of cost submitted now (about 10% compared to PECI 2013)
- Implementation status:
 - updating Feasibility Study (Design and permitting on the PCI list),
 - the project was delayed do to change of external factors
 - Financing gap and land acquisition are the mayor risks

Missing Data – Inconsistency of Submitted Project Data

Missing Data

- Capacity data is missing the project can not be assessed
- Cost data is missing or is only party submitted modelling of benefits is possible, however the NPV can not be calculated
 - Submission of data is essential latest by:
 - In case of missing data we could estimate a CAPEX figure, however this could jeopardize the seriousness of the PECI/PMI label
- Proof of the mutual intent should be provided before(end of April)

Inconsistent Data

- Capacity: "ENTSO-G: To enable the modelling tool to assess a project, both legal entities on both sides of a border should submit a project with a matching capacity" In the PECI case we are fine with one capacity submitted and will assume that this matches with the other part. Although in case we find inconsistency with national TYNDP, the lesser rule will apply.
- Commissioning date: the later date will apply

Input Data Verification for EEMM Modelling

E	lectricity d	lemand (in	GWh/yea	.)	
	2015	2020	2025	2030	
AL	7 842	9 163	10 704	12 399	
BA	12 606	13 000	14 000	15 000	
KO*	5 570	6 318	9 216	10 484	
ME	3 395	3 419	3 870	4 366	
MD	5 861	6 567	7 357	8 243	
MK	7 491	9 262	10 226	11 290	
RS	37 735	36 648	38 600	40 845	
UA_E	143 915	160.027	166 292	176 670	
UA_W	4 429	160 937	100 292	176 679	

	Net i	nstalled ca	pacity in t	he region i	n 2015 (in l	MW)	
	Coal and lignite	Natural gas	Nuclear	Wind	HFO/LFO	Hydro	Other RES
AL	0	0	0	0	0	1 801	1
BA	1 765	0	0	0	0	2 162	0
KO*	1171	0	0	1,35	0	52,7	0,1
ME	218,5	0	0	0	0	668,27	0
MD	1000	1727	0	1,1	0	64	2,9
MK	736	260	0	37	198	671	20
RS	4 075	416,66	0	10,4	0	3 018	13,35
UA_E	20 069	11 721	13 835	420	0	5 771	395
UA_W	2 334	217	0	7	0	38	19

Planned Fossil-Based and RES Generation Capacities

	New fossil-based power generation capacities (in MW)									
	2016-2020				2021-2025			2026-2030		
	Coal and lignite	Natural gas	HFO/LFO	Coal and lignite	Natural gas	HFO/LFO	Coal and lignite	Natural gas	HFO/LFO	
AL	0	200	0	0	160	0	0	0	0	
BA	1100	390		300						
КО*	0	0	0	500	0	0	500	0	0	
ME	225	0	0	0	0	0	0	0	0	
MD	0	0	0	0	0	0	0	0	0	
MK	120/-120	30	0	0	150	0	200/-200	420	-198	
RS	0	478	0	700	0	0	350	0	0	
UA_E	1300	550	0	1000	200	0	0	0	0	
UA_W	0	0	0	0	0	0	0	0	0	

New RES-E power generation capacities (in MW)

		Hydro			PV			Wind			Other	
	2016- 2020	2021- 2025	2026- 2030									
AL	523	457	457	30	26	2650	30	25	2050	0	0	0
BA	285	65,4	0	10	0	0	232	0	0	0	0	0
KO*	212	0	0	10	0	0	148,65	0	0	10	0	0
ME	54	451,3	0	10	13,5	8	151,2	17,1	21,4	31	10	8
MD	0	0	0	0	0	0	149	124	124	8	8	8
MK	114	26	45	7	8	30	13	50	50	3	5	10
RS	458	100	780	5	90	100	500	0	100	144	69	72
UA_E	1330	2400	0	1 170	0	0	1 600	265	0	165	2000	0
UA_W	0	0	0	0	0	0	0	0	0	0	0	0

Natural Gas

Input Data Verification for EGMM

	Gas demar	nd TWh/ye	source	Note		
	2015	2020	2025	2030		
Albania	0	4,9	8,82	11,76	ECA	conditional on new infra
Bosnia	1,66	1,66	8,37	8,92	TYNDP	conditional on new infra
Kosovo*	0	0	3,92	5,88	MED, ERO, KSOTT	conditional on new infra
Montenegro	0	0	0,26	0,4	ECA	conditional on new infra
Moldova	10	11	12	13	REKK	
FYR of Macedonia	1,96	6,61	6,85	6,88	TYNDP	conditional on new infra
Serbia	22	27	30	35	Energy balance 2015	
Ukraine	369	368	371	375	Naftogas	

Gas production TWh/year							
	2015	2020	2025	2030			
Albania	0	0	0	0	ECA		
Bosnia	0	0	0	0	TYNDP		
Kosovo*	0	0	0	0	ECA		
Montenegro	0	0	0	0	ECA		
Moldova	0	0	0	0	REKK		
FYR of Macedonia	0	0	0	0	TYNDP		
Serbia	5,43	3,72	2,78	1,9	Energy balance 2015		
Ukraine	170	170	170	170	Naftogas		

No response from: AL

Gas input data for EGMM

Pipeline	From	To market	Maximum	Transmi	ssion fee
ripenne	market	To market	flow	Entry	Exit
			GWh/d	€/MWh	€/MWh
HU-RS	HU	RS	141	1,06	2,00
RS-BA	RS	BA	16	1,56	2,85
BG-MK	BG	MK	27	1,96	0,90
UA-HU	UA	HU	600	1,25	2,55
HU-UA	HU	UA	0	0,00	0,00
UA-MD	UA	MD	73	2,22	1,95
UA-PL	UA	PL	0	1,28	1,46
PL-UA	PL	UA	45	0,00	0,94
UA-SK	UA	SK	2 288	0,80	2,67
SK-UA	SK	UA	265	0,00	0,63
UA-RO	UA	RO	855	1,45	2,17
RO-MD	RO	MD	67	1,00	1,00
MD-RO	MD	RO	67	1,00	1,00

Source for capacity: ENTSO-G,

Source for transmission fee: NRA, REKK calculation

Storage	Market	Injection	Withdrawal	Working gas capacity	
		GWh/d	GWh/d	TWh	
Storage_RS	RS	36,3	41,5	4,7	

Long term contract with Russia							
	ACQ	Price in 2016 \Q1*	contract expiry				
	TWh/year	€/MWh					
Albania	0	0,0	n.a				
Bosnia	1,66	28,5	yearly				
Kosovo*	0	0,0	n.a				
Montenegro	0	0,0	n.a				
Moldova	10	17,6	yearly				
FYR of Macedonia	1	20,8	yearly				
Serbia	up to 50	18,6	2021				
Ukraine	60	13,4	yearly				

* LTC price for each country is forecased by REKK: calculation is based on national statistical data and World Bank oil price forecast

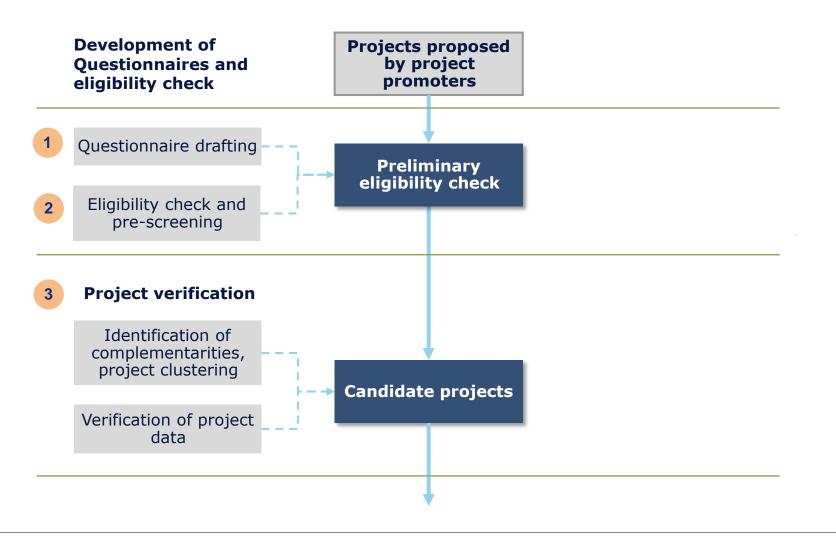
No respond from: AL

Agenda

- 1. Project Timeline
- 2. Screening of Submitted Project Proposals
 - a) Eligibility
 - b) Verification
- 3. Overview on Final Assessment Methodology
- 4. Overview of Electricity Network Model
- 5. Cost Benefit Analysis for Electricity

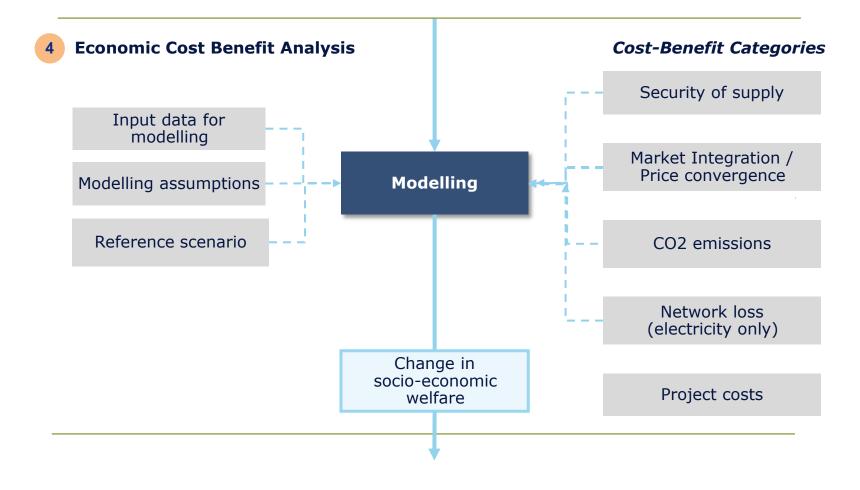
Specification of reference scenarios and presentation of example project evaluation

6. Cost Benefit Analysis for Natural Gas

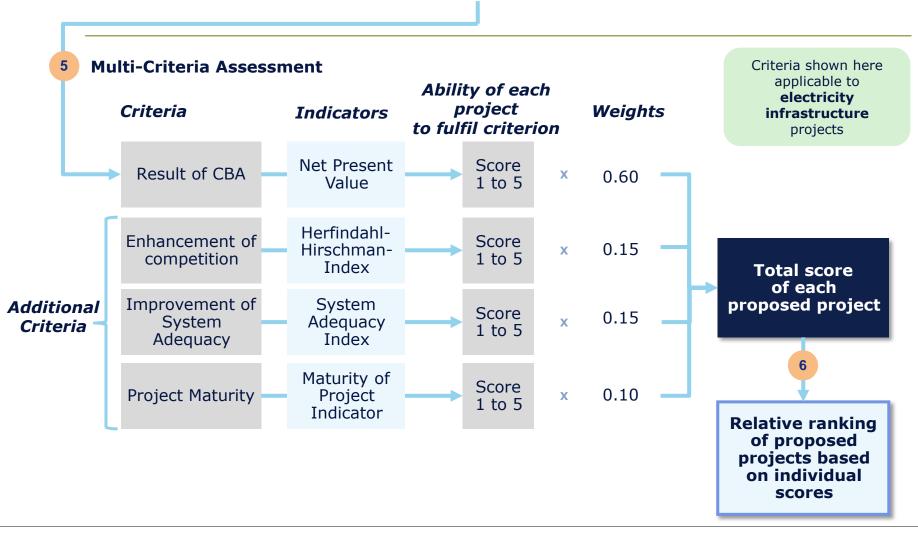

Specification of reference scenarios and presentation of example project evaluation

7. Multi-criteria Assessment Methodology

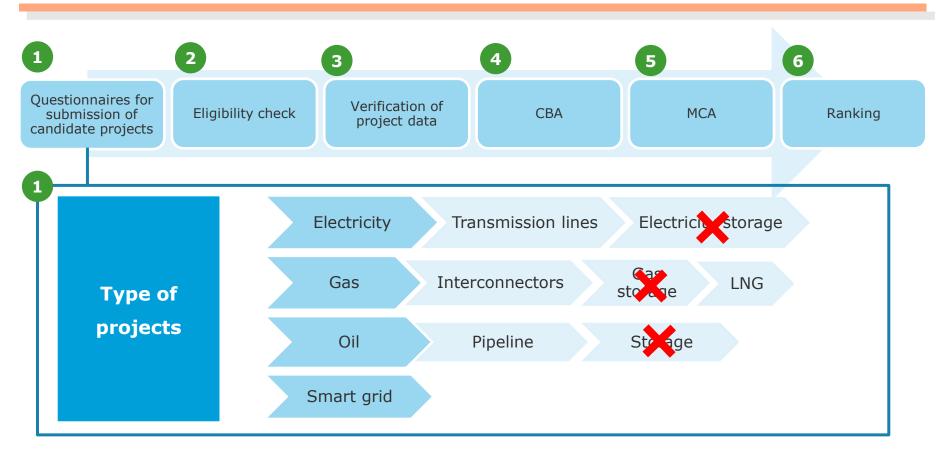
Presentation of example project evaluation



Overview of the Project Assessment Methodology

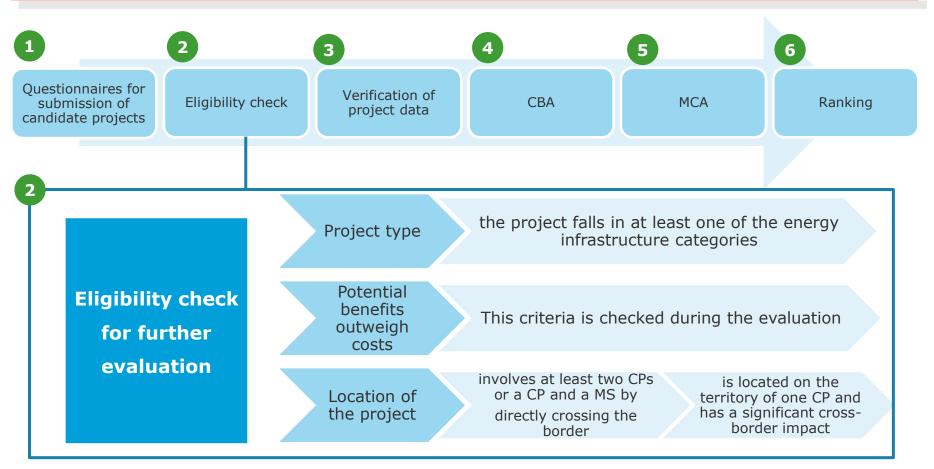


Overview of the Project Assessment Methodology



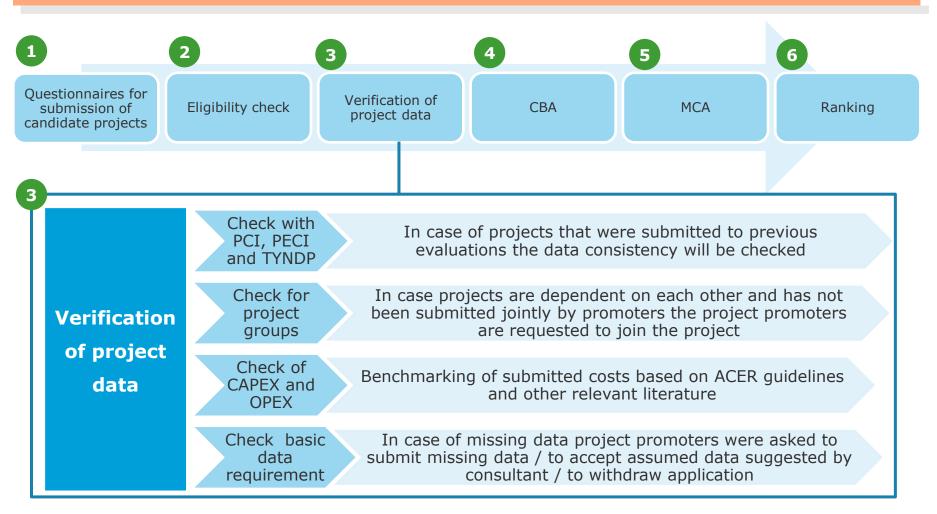
Overview of the Project Assessment Methodology

Step 1 – Questionnaires for Submissions of Candidate Projects



- Interconnector projects on the two side of the borders can only be modelled together
- Project promoters are hence requested to submit proposals jointly for the same project
- Oil and smart grid project evaluation follows a different approach: no modelling

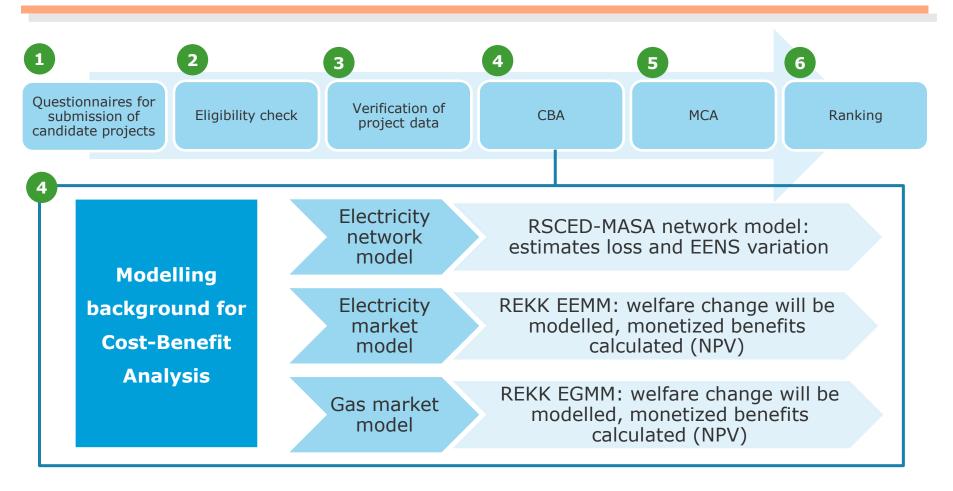
2nd Group Meeting


Step 2 – Eligibility Check

Evaluation of projects with and without having a PCI status follows the same approach. The PCI status will be taken into account in the final step of the decision making: selected projects will qualify as a PECI or as a Project of Mutual interest. (Art 4 para 5 and 6.)

Step 3 – Verification of Project Data

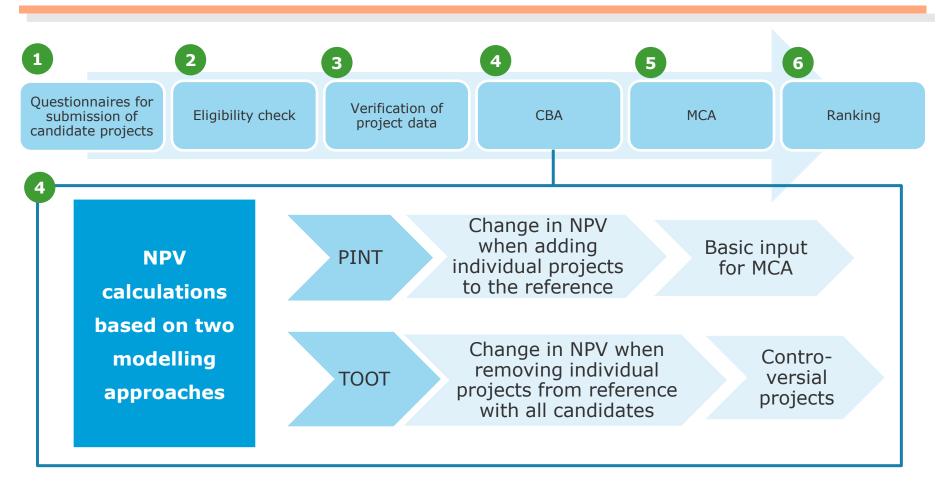
Minimal data need for project assessment: capacity (at the border), cost, commissioning date



An investment project would be beneficial to the investigated stakeholder group if the cost-benefit analysis provides a positive net benefit (i.e. a positive NPV)

- Costs and benefits of a project are assessed in the economic analysis by the Net Present Value (NPV)
- Calculation of the Net Present Value (NPV) of economic costs and benefits includes
 - the monetary costs and benefits of the investor
 - the costs and benefits to other stakeholders and the society as a whole affected by an investment project
- (Economic) NPV is the difference between the discounted total social benefits and costs
- Economic assessment of a project is positive if the NPV is positive (NPV > 0)

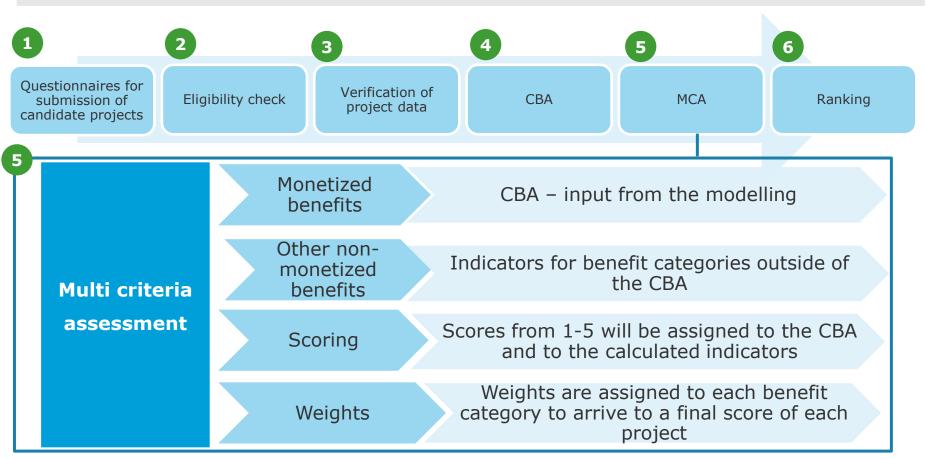
Step 4 – Cost-Benefit Analysis (Market and Network Modelling)


• Cost benefit analysis of the project: social NPV of the project calculated for the region

2nd Group Meeting

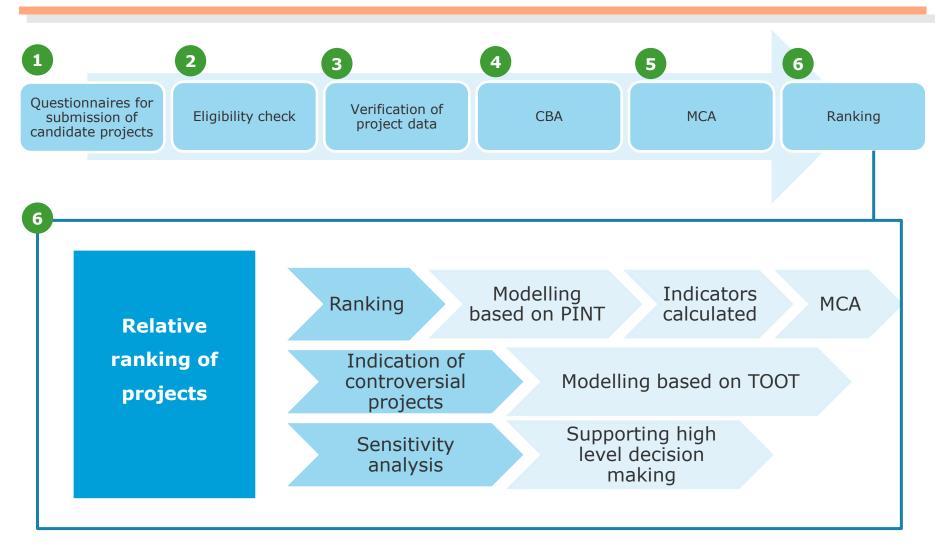
8 April 2016

Step 4 – Cost-Benefit Analysis (Market and Network Modelling)



- PINT: put-in-one-at-a-time modelling
- TOOT: take-out-one-at-a-time modelling

2nd Group Meeting


Step 5 – Multi Criteria Assessment

- MCA allows integration of monetized benefits (result of CBA) with non-monetized benefits (assessment of additional quantitative and qualitative criteria)
- Outcome will be a relative ranking of all eligible projects (separate for electricity and gas projects)

Step 6 – Ranking

Open Questions on Methodology from 1st Meeting

- Geographical coverage for the assessment EnC CPs + neighboring EU MSs
- Application of PINT vs TOOT approach: Which method should be used when evaluating the impacts of the infrastructure elements?
 - TOOT would give results reflecting the ,marginal' contribution of the given line, as it would be evaluated in an environment, where possible other network elements are already operated in the system and ,take their market share'.
 - PINT, in opposite would tend to result in higher utilisation of the lines, as other network elements are missing from the network.
 - Our recommendation: use the PINT approach first, as the order and timing of the construction of lines are quite uncertain. But calculate TOOT as well, to check if it changes the ,order' of the projects. Also, application of both would help to detect competing projects (where TOOT would negatively score them)
- Modell input data:
 - for market modelling thank you for all your inputs
 - for network modelling still discussed

Open Questions on Methodology for Electricity

- CO₂ impact evaluation: Shall we include CO₂ taxation for the modelling of EnC region from 2020 on? If yes, the model will endogenize decision on fuel switching, so CO₂ impacts will be included in welfare estimations of the EEMM model. If not, change in CO₂ emissions need to be monetized in an ,outside of the modelling' adhoc calculation (e.g. What carbon price level should be applied?).
 - Our recommendation: Assume a carbon taxation regime after 2020 for the EnC region, so CO_2 impacts are endogenized in the economic modelling.
- Value of Loss Load (VOLL) in monetizing EENS (Expected Energy Not Supplied): What should be the basis for the VOLL calculations – VOLL values from the literature (re-calibrated from other countries, as it is not available for EnC countries) or use the GDP/Electricity consumption value as a proxy for VOLL?
 - Our recommendation: Use the GDP/Electricity consumption value as a proxy for VOLL, as it is region specific and based on more reliable data (e.g. on Eurostat data)

Open Questions on Methodology for Natural Gas

How can we ensure that Russian gas is still possible to reach the region even when Russian LTCs partially expire?

- The problem of Russian gas supplies reaching the region can be addressed by keeping regional LTCs on their current ACQ – the strategies of the CPs forecast a huge demand increase parallel to the commissioning of the proposed new infrastructure. This means that the dominance of Russian gas in the region can be challenged in the future by new competing gas sources being available serving new demand.
- Modell allows that further amount of gas can be delivered by Russia either by the flexibility of the contracts (uniform +30%) oil indexed or through Russian deliveries on a TTF price + transportation cost. Other sources will compete with the Russian gas above the current LTC level. This approach allows for an increasing proportion of market priced gas (Russian or other source) in the region when more infrastructure and more demand is present.

Reflections on Comments Received After 1st Meeting

- Input data shall be as good as possible agree
- Same data should be used as by ENTSO-E modelling: do not necessarily agree, e.g. the demand forecasts and fuel prices might be outdated, the latest forecasts of the respective countries will be used.
- There should be no ranking based on the CBA in line with the Regulation 347 in the Energy Community the final list will not include any ranking
- The NPV should indicate weather a project is positive or negative for the Energy Community – there are more possible solutions for this:
 - We publish for the Group the NPV results for each project, but we do not publish it in the Final Report
 - We publish to the Group and in the Final Report whether a projects' NPV is clearly negative/ positive/close to zero. This can be reflected in the multicriteria assessment as well: projects with a negative NPV can score 0 for the CBA...
- We believe that besides the CBA there might be non monetized benefits of the project, and this is why the multi-criteria assessment is a good approach.

Agenda

- 1. Project Timeline
- 2. Screening of Submitted Project Proposals
 - a) Eligibility
 - b) Verification
- 3. Overview on Final Assessment Methodology
- 4. Overview of Electricity Network Model
- 5. Cost Benefit Analysis for Electricity

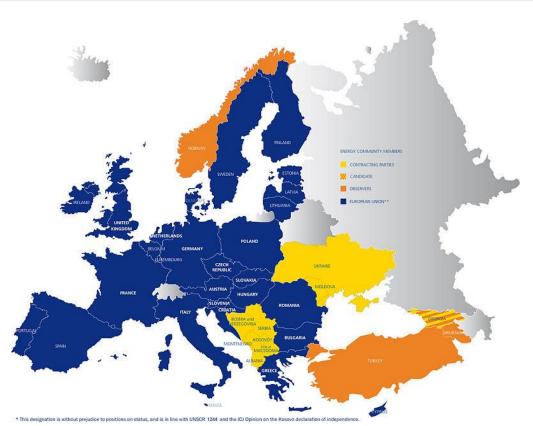
Specification of reference scenarios and presentation of example project evaluation

6. Cost Benefit Analysis for Natural Gas

Specification of reference scenarios and presentation of example project evaluation

7. Multi-criteria Assessment Methodology

Presentation of example project evaluation


Introduction

- Network Modelling (MANU) team:
 - Two professors
 - Three lecturers
 - Three teaching and research assistants
- Research center for energy and sustainable development Macedonian academy of sciences and arts (RCESD-MASA)
- Faculty of electrical engineering and information technology Skopje, Macedonia
- Faculty of computer science and engineering Skopje, Macedonia

Energy Community Electricity Transmission (EC-ET) model

- Update of the EC-ET model:
 - Albania
 - Bosnia and Herzegovina
 - Bulgaria
 - Croatia
 - Greece
 - Hungary
 - Kosovo*
 - Montenegro
 - Macedonia
 - Romania
 - Serbia
 - Slovenia

Ukraine and Moldova will be added to the model

Input Data

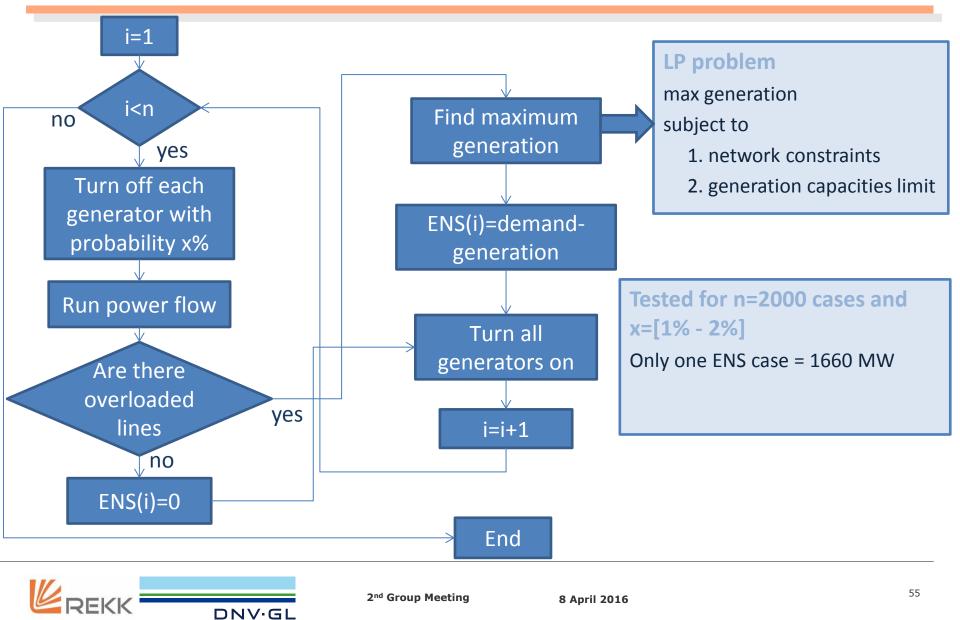
- Input data needed for the model:
 - Generation capacity (electricity production)
 - Demand
 - Characteristics of the transmission network (voltage level: 110kV and up)
- At the moment detailed network transmission data for 2007, 2008 and 2011 (used only to test the possibilities of the model)
- STILL waiting for updated data
 - official letter sent by the Secretariat asking for the data
 - SECI and Ukraine and Moldova regional projects use PSS/E software
 - .raw format is suitable for us

Characterisation of the Electricity Network Model

- Planning horizon:
 - 2020
 - 2025
 - 2030
- Two methodology will be applied (ENTSO-E uses TOOT in TYNDP):
 - Take Out One at the Time (TOOT)
 - Put In one at the Time (PINT)
- The EC-TC model represents the actual network power flows
- Model Output:
 - Additionally, the following assessments will be obtained:
 - Changes in net transfer capacity (NTC)
 - Changes in non served energy
 - Changes in transmission losses

Criteria – Changes in Transmission Losses

- AC directly calculated
- DC approximately calculated:


Losses =
$$R_{br} * \frac{P_{br}^2}{\cos^2 \varphi * U^2}$$
 where $U = 1 p. u.$ $\cos \varphi = [0.95 - 0.99]$

Example for calculation of transmission losses in SEE network:

AC model: losses = 662.5 MWDC model: for $cos\phi$ [0.95–0.99], losses = [690.4MW - 662.5MW]

Criteria – Changes in Non Served Energy

Criteria – Changes in Net Transfer Capacity (NTC)

- Calculation of NTC between two counties:
 - increase generation in country 1
 - decrease generation in country 2

LP problem

```
max generation in country 1
```

subject to

1.Generation from the reference scenario = generation from increasing/decreasing (NTC) scenario

- 2. network constraints
- 3. generation capacities limit
- Example for calculation of non served energy
 - Macedonia Greece 342 MW
 - Greece Macedonia 420 MW

Conclusion

- Electricity network model suitable for the calculation of
 - Transmission losses
 - Energy not served
 - Net Transfer Capacity
- Model input data to be updated with current data from TSOs

Agenda

- 1. Project Timeline
- 2. Screening of Submitted Project Proposals
 - a) Eligibility
 - b) Verification
- 3. Overview on Final Assessment Methodology
- 4. Cost Benefit Analysis for Electricity

Specification of reference scenarios and presentation of dummy project evaluation

5. Cost Benefit Analysis for Natural Gas

Specification of reference scenarios and presentation of dummy project evaluation

6. Multi-criteria Assessment Methodology

Presentation of dummy project evaluation

Description of Electricity Dummy Project (BG-RO new OHL line)

The dummy project: a new 400kV OHL between Romania and Bulgaria

- Capacity: the new OHL increases the NTC by 1000 MW in both directions
- Commissioning year: 2020
- Investment costs:
 - BG: 25 m€ in 2018; 25 m€ in 2019
 - RO: 25 m€ in 2018; 25 m€ in 2019
- Operation cost: 0.5 m€/year in both countries from 2020
- Transmission loss and EENS changes are assumed to be the followings (in the assessment these values will come from the network modelling):
 - Loss change: +100 GWh/year in BG, -50 GWh/year in RO
 - EENS change: 0.3 GWh/year in BG; 0.6 GWh/year in RO
- We assume that ETS will be fully introduced in EnC Countries from 2020 \rightarrow CO₂ costs are taken into account within the optimization of the market model

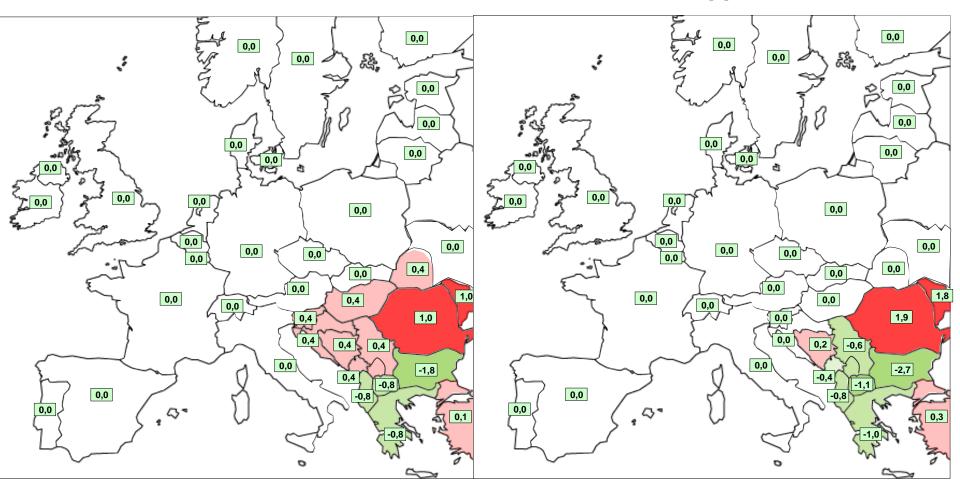
Parameters of the Cost-Benefit Analysis

- Components of Net Present Value (NPV) calculation
 - NPV = CS + PS+ Rent + Value of losses + EENS OPEX Investment cost
 - CS: Consumer surplus change in the countries of the area of analysis
 - PS: Producer surplus change in the countries of the area of analysis
 - Rent: Rent change in the countries of the area of analysis
 - Value of losses: Value of loss change in the countries of the area of analysis
 - EENS: Value of Expected Energy Not Supplied change
 - OPEX: Operation and Maintenance cost change due to the project
 - Investment cost: verified investment cost
- When calculating the NPV, we apply the 25 years of assessment period and a residual value of zero are applied → ENTSO-E methodology (assuming the same period length allows comparability)
- Values between 2016-2030 are modelled by EEMM; after 2030 values are kept constant → harmonized with ENTSO-E methodology
- Real social discount rate: 4 % → ENTSO-E methodology

TOOT vs. PINT

- REF(Pint) scenario includes all infrastructure elements listed in the ENTSO-E TYNDP 2014 except all PECI/PMI candidates
- REF(Toot) scenario includes all infrastructure elements listed in the TYNDP and all PECI/PMI candidates. From this pool PECI/PMI candidates are taken out one-byone.
- Calculating the change in welfare/prices the following rules are followed:

	PINT	тоот
Base scenario	REF(Pint)	REF(Toot)
Assessed scenario	REF(Pint) + assessed project	REF(Toot) – assessed project
Calculating the change of the assessed project	Assessed SC - REF(Pint)	REF(Toot) - Assessed SC

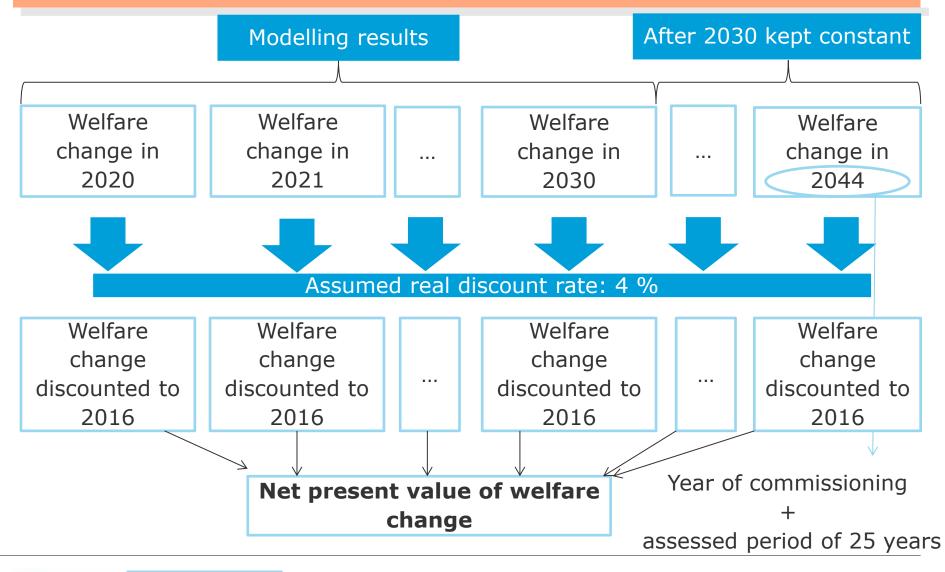


Electricity

EEMM Modelling Results: Price Changes Due to Dummy Project in 2030, €/MWh (TOOT vs PINT approach)

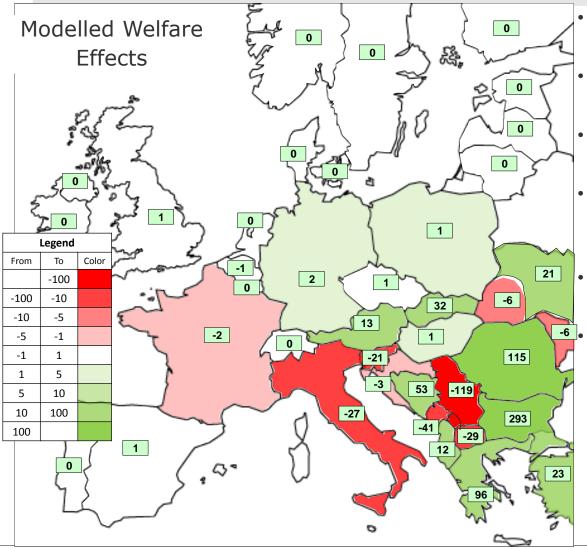
TOOT approach

PINT approach


Social Welfare Effects in BG and in RO in TOOT Methodology

- Due to the new OHL, wholesale price increases in Romania and reduces in Bulgaria
- Price reduction in BG results in a consumer welfare gain, but producers loose
- Price increase in RO results in a producer welfare gain, but consumers loose

	Unit (M€)	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Consumer welfare change	8.4	14.1	29.6	58.6	153.5	359.6	410.5	65.8	56.1	78.2	75.9
BG	Producer welfare change	-8.3	-13.8	-27.2	-53.9	-91.4	-187.2	-207.2	-57.3	-49.6	-65.7	-62.7
	Rent change	-0.1	-1.1	-2.8	-6.1	-25.6	-71.7	-84.5	-1.0	1.9	0.8	1.5
	Total social welfare change	-0.1	-0.9	-0.3	-1.5	36.5	100.7	118.8	7.5	8.4	13.3	14.8
	Consumer welfare change	-2.5	-4.4	-14.4	-19.9	-36.6	-46.8	-43.1	-33.5	-29.7	-36.8	-65.8
RO	Producer welfare change	2.8	5.1	18.7	26.6	50.4	60.6	55.7	42.2	38.1	50.5	85.8
	Rent change	-1.1	-1.9	-4.4	-8.1	-12.0	-30.8	-32.2	-3.4	-0.2	-2.9	-1.0
	Total social welfare change	-0.7	-1.2	0.0	-1.4	1.8	-17.1	-19.6	5.2	8.2	10.8	19.0



Calculating the Net Present Value of Social Welfare Changes

Electricity

Net Present Value of Total Social Welfare Changes in TOOT method, M€

DNVGL

- Total welfare change in modelled countries in **TOOT** method: **407 M€**
- Total welfare change in modelled countries in **PINT** method: **546 M€**
- Total welfare change in **BG+RO** in PINT method: **491 m€**
- Total welfare change in
 EnC+Neighbouring countries in
 PINT method: 562 M€
- Total welfare change in EnC
 countries PINT method : -84 M€
 - Geographical coverage matters! Recommendation:
 - calculation to be based on EnC + neighbouring EU members or
 - whole ENTSO-E

Monetization of Transmission Loss Changes

- Transmission loss change monetization steps:
 - 1. step: Determine the volume of transmission loss changes due to the project > result of network model
 - 2. step: Calculate the yearly baseload price -> result of the market model, this price serves as a basis for valuing the loss changes
 - 3. step: Calculate the net present value of the yearly cost of transmission loss changes
- I. step: Assumed transmission change is:

DNVGL

- +100 GWh/year in BG; -50 GWh/year in RO
- 2. step: Baseload price between 2016-2030 -> result of the model; after 2030 the baseload price will be kept at the 2030 level
- 3. step: Same method as in social welfare change: NPV=48.5M€

		2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	 2044
Baseload price,	BG	40.3	42.6	47.0	49.3	56.7	61.0	64.7	64.2	67.6	69.9	75.1	 75.1
€/MWh	RO	40.1	42.4	46.1	48.2	52.3	54.0	57.4	60.3	62.7	64.1	68.2	 68.2
Monetization of	BG	4.0	4.3	4.7	4.9	5.7	6.1	6.5	6.4	6.8	7.0	7.5	 7.5
transmission loss	RO	-2.0	-2.1	-2.3	-2.4	-2.6	-2.7	-2.9	-3.0	-3.1	-3.2	-3.4	 -3.4
changes, M€	Total	2.0	2.1	2.4	2.5	3.1	3.4	3.6	3.4	3.6	3.8	4.1	 4.1

Monetization of Changes in Energy not Supplied

EENS change monetization steps:

- 1. step: Determine the volume of EENS due to the project (in MWh) -> result of network model
- 2. step: Monetize the EENS value by using the average yearly GDP figures of the EnC countries (GDP/electricity consumption, based on Eurostat Unit:€/kWh)
- 3. step: Calculate the net present value of the yearly cost of EENS changes

Proposed values in calculations:

- 1. step: Assumed EENS change is (it will come from network modelling in the assessment):
 - 0.3 GWh/year in BG; 0.6 GWh/year in RO
- 2. step: ~1.04 € /KWh based on latest Eurostat figures
- 3. step: NPV calculation of benefits over 25 years: NPV (BG)= 4.33 M€; NPV (RO)= 8.67 M€

Net Present Value of Investment Cost and OM Cost

- Investment cost:
 - BG: 25 m€ in 2018; 25 m€ in 2019
 - RO: 25 m€ in 2018; 25 m€ in 2019
- The operation cost is 0.5 m€/year in both countries from 2020
- Net present value of investment cost:
 - Discounted each CAPEX value to 2016
 - NPV of investment cost is -90.7 M€ (BG+RO)
- Net present value of OM cost:
 - OM costs occur between 2020-2044 (assessment period of the project is 25 years)
 - Discounted OPEX costs value to 2016
 - NPV of OPEX cost is: -13.8 M€ (BG+RO)

Electricity

Summary of Cost-Benefit Analysis of Dummy Project, M€

		Consumer	Welfare ch Producer		Subtotal	Investm ent cost	OM cost	Trans. loss change	EENS change	Total net present value
		consumer		Rene				change		
	тоот	-40	850	-403	407	-91	-14	49	13	364
Modelled countries	PINT	-221	1305	-538	546	-91	-14	49	13	503
	тоот	746	56	-416	385	-91	-14	49	13	342
EnC + Neighbours	PINT	1445	-383	-499	563	-91	-14	49	13	520

This NPV value goes into MCA

Main Market Model Assumptions – Fuel Prices

Oil price	 Based on World Bank 								
Natural gas price	 Result of the EGMM Reference case 								
Coal price	 Hard coal price equal ARA price Coal price forecasts are based on Economist Intelligence Unit Lignite price = hard coal * 0.55 	Year 2016 2020 2025 2030	ARA coal price, €/GJ 1.52 1.85 1.85 1.85 1.85						
Nuclear	 Taken from literature, but irrelevant (n 	ever m	arginal)						
HFO, LFO	 Indexed to crude oil price 								
CO ₂ price	 By 2030 CO2 price will increase to 22 €/t according to Impact Assessment of Climate and Energy Package in 2014 	Year 2016 2020 2025 2030	CO2 price, €/t 4.10 9.21 15.61 22.00						

DNV.GL

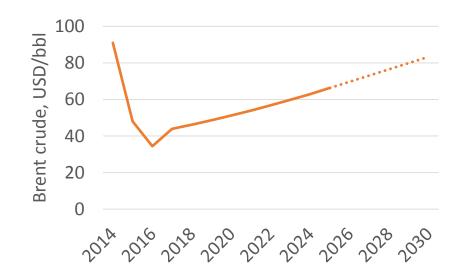
Agenda

- 1. Project Timeline
- 2. Screening of Submitted Project Proposals
 - a) Eligibility
 - b) Verification
- 3. Overview on Final Assessment Methodology
- 4. Cost Benefit Analysis for Electricity

Specification of reference scenarios and presentation of dummy project evaluation

5. Cost Benefit Analysis for Natural Gas

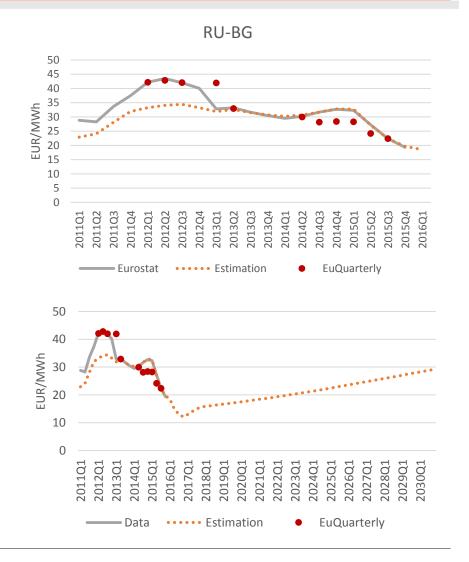
Specification of reference scenarios and presentation of dummy project evaluation


6. Multi-criteria Assessment Methodology

Presentation of dummy project evaluation

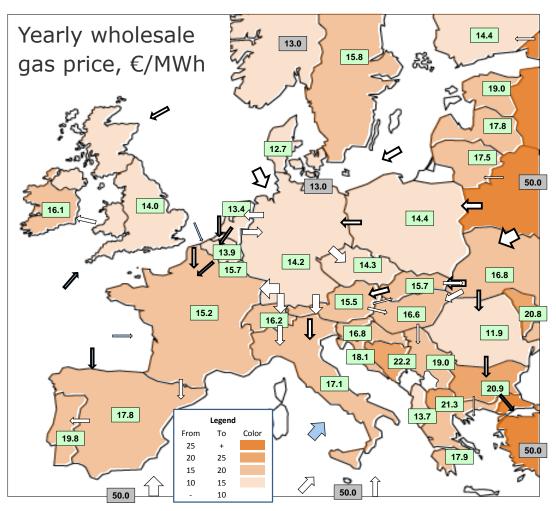
Detailed Assumptions of Reference Scenarios

- A reference case is set up for each year in the 2016-2030 period
- 2016 reference is calibrated on the 2015 actual natural gas flows, gas consumption and production reported by ENTSOG, EUROSTAT and IEA
- Price levels were set to reflect 2015 and 2016 price developments of European gas market
- Forecasts of price are based on the Brent forecast of World Bank to 2025
- For the period 2025-2030, same growth rate is assumed as in 2020-2025 period
- Long term contracts and TTF is set to the oil price scenario


Source: World Bank Commodities price forecast, 01.20.2016. and for 2025-2030 REKK

2nd Group Meeting

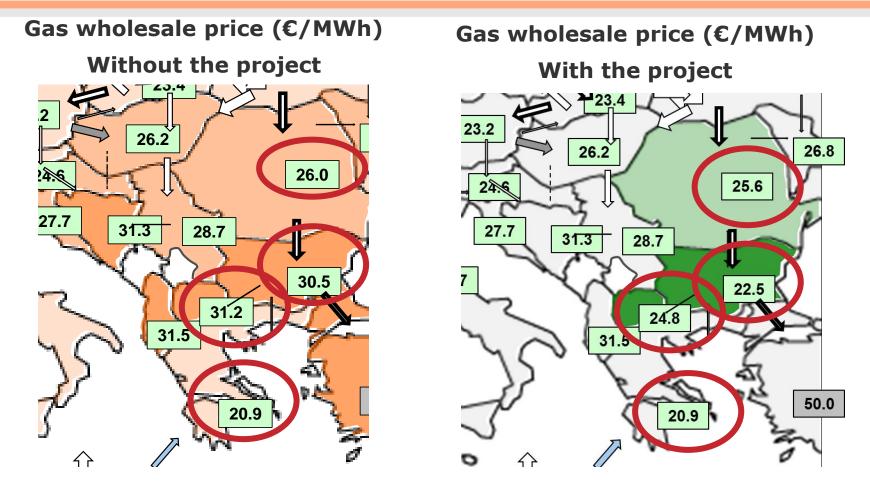
Example: Long term Contract Estimation for Bulgaria


- Contracts in the region are assumed to be 100% oil indexed
- A simple OLS estimation establishes the connection of Brent crude and oilindexed gas price at the border
- Data for estimation is collected from Eurostat or national statistical agencies foreign trade databases
 - Gaseous state natural gas import volumes form Russia
 - Gaseous state natural gas import value in € form Russia

Natural Gas

Validation of the 2016 Reference

- Prices are in line with 2016Q1 price levels (as reported by Eurostat and national statistics)
- 90% of the modelled flows is in line with reported flows for 2015 (for those where data is available)
- Outside market supply reflects
 2015 Eurostat data
- Flows, production and consumption levels crosschecked with Eurostat, ENTSO-G, IEA gas trade flows in Europe



Main Assumptions for Modelling and Data Source

Input type	Data source 2016 reference	Forecast		
Pipeline infrastructure	ENTSOG 2015	ENTSOG TYNDP		
LNG infrastructure	ENTSOG 2015	ENTSOG TYNDP		
UGS infrastructure	ENTSOG 2015 ENTSOG TYNDP			
Long term contracts	REKK data collection, based on CEDIGAZ	LTCs re-contracted at the same ACQ		
Production	Eurostat	ENTSOG TYNDP and Project Promoters		
Consumption	Eurostat	ENTSOG TYNDP and Project Promoters		

Illustration Only Example: New Interconnector BG-GR in 2020

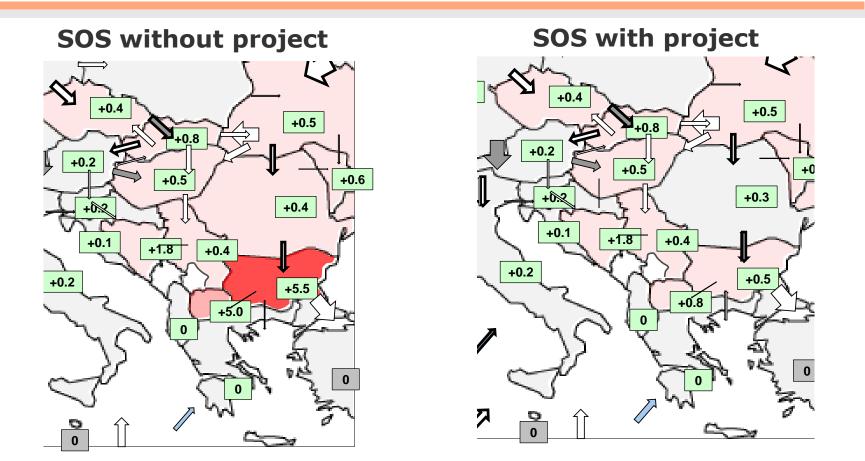
- A new bi-directional interconnector is commissioned connecting BG and GR (capacity 134 GWh/day)
- Effect: spot LNG gas flows may reach Bulgaria and Macedonia

2nd Group Meeting

GR-BG Interconnector Welfare Change Effects

	Consumers	Producers	LTC trader profit	SSO	TSO	LNG	Total welfare
GR	-0.4	0	0.1	0	7.6	9.4	16.7
BG	347.1	-102.8	-219	1.2	12	0	38

• BG:


- Consumer surplus surges due to lower prices (price drop from 30.5€/MWh to 22.5€/MWh)
- Producer surplus and LTC holder profit drops, since the domestic production can be marketed at a lower price
- TSO operating profits increase due to higher flows on the newly commissioned pipeline

• GR

 TSO profits and LNG terminal operator profits increase, due to higher utilisation of infrastructure

Impacts on Security of Supply

The project alleviates the SOS situation in BG and MK

Sample Project Evaluation

	Welfare cha	ange in normal scen Weight: 95%	ario (mill€)	Welfare cl	hange in SOS scena Weight:5%	total Investment cost (mill€)	change in CO2 emissions	NPV	
	20162020	20212025	20252030	20162020	20212025	20252030			
AL									
BA									
BG									
GR									
HR									
HU									
IT									
КО*									
ME									
MK									
MV									
PL									
RO									
SB									
SK									
UA									
REGION									

TOOT vs. PINT

- REF(Pint) scenario includes all infrastructure elements of the current gas infrastructure + FID projects (investments into gas infrastructure is more uncertain/implementations are delayed)
- REF(Toot) scenario includes all infrastructure elements of Ref (Pint) and all PECI/PMI candidates. From this pool PECI/PMI candidates are taken out one-byone.
- Calculating the change in welfare/prices the following rules are followed:

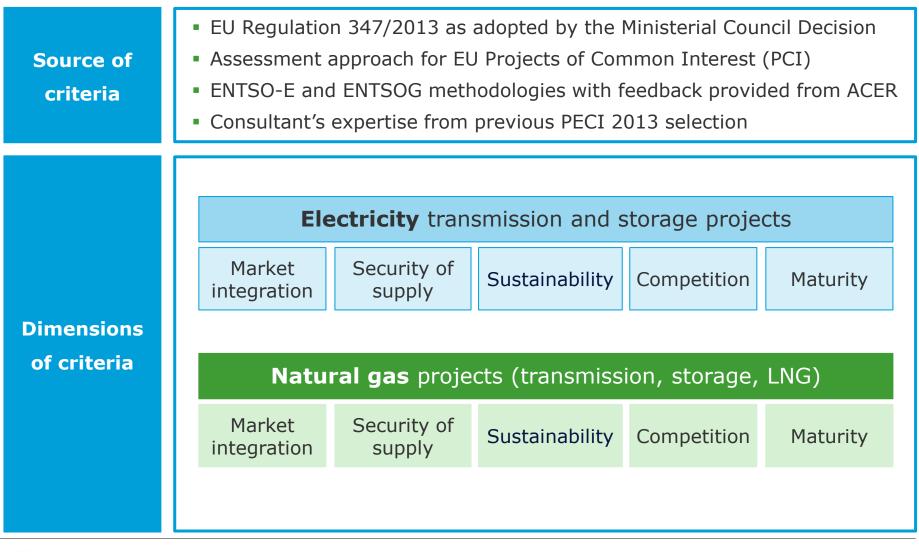
	PINT	тоот
Base scenario	REF(Pint)	REF(Toot)
Assessed scenario	REF(Pint) + assessed project	REF(Toot) – assessed project
Calculating the change of the assessed project	Assessed SC - REF(Pint)	REF(Toot) - Assessed SC

Agenda

- 1. Project Timeline
- 2. Screening of Submitted Project Proposals
 - a) Eligibility
 - b) Verification
- 3. Overview on Final Assessment Methodology
- 4. Cost Benefit Analysis for Electricity

Specification of reference scenarios and presentation of dummy project evaluation

5. Cost Benefit Analysis for Natural Gas


Specification of reference scenarios and presentation of dummy project evaluation

6. Multi-criteria Assessment Methodology

Presentation of dummy project evaluation

Overview on Multi-Criteria Assessment Methodology

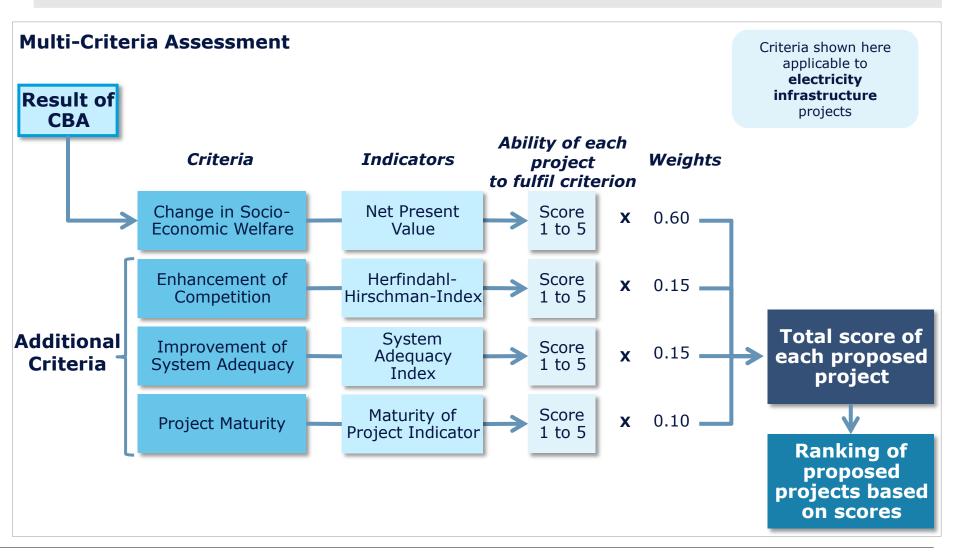
Net Present Value (NPV) – Result of economic CBA

- Within the economic CBA the change in socio-economic welfare is assessed by the following criteria:
 - market integration via the impact on wholesale price changes (convergence) resulting from reduced congestion, access to sources with lower production costs and enhancement of competition
 - security of supply related benefits measured by reductions of outages and nonsupplied electricity
 - variation of CO₂ emissions related to changes in regional electricity production patterns
 - variation of **network losses** related to changing load flow patterns

Herfindahl-Hi	rschman-Index (HHI)
	 Interconnection projects may enhance wholesale competition by providing access to generation capacities from alternative power producers
Reasoning	 Transfer of monopoly rents (i.e. price-mark-ups over production costs) gained by producers / importers / traders to consumers
	 Market model (used in CBA) assumes competitive market equilibrium
Indicator	 Enhancement of competition approximated by explicit criterion on change of market concentration
	 Herfindahl-Hirschman-Index (HHI)
	 Defined as sum of the squared market shares in power generation (accounting for interconnection capacities)
Calculation	 Calculated with and without the project as average for countries on each end of interconnector
	The higher the value of the index the higher the market concentration
	 Score calculated by linear interpolation between min and max values of the change of the indicator of all eligible projects

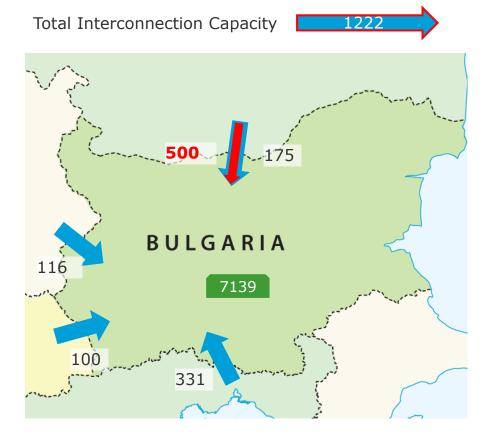
System Adequacy Index (SAI)						
	CBA incorporates only some aspects of security of supply					
Reasoning	 Additional indicator to account for system adequacy impact of each proposed electricity infrastructure project, reflecting on flexibility and ability of system to withstand extreme conditions 					
Indicator	 Enhancement of system flexibility approximated by simplified indicator for system adequacy based on generation and interconnection capacities and system peak demand 					
	 System Adequacy Index (SAI) 					
	 SAI = (generation capacity + interconnection capacity - system peak demand) / system peak demand 					
Calculation	 Calculated with and without the project as average for countries on each end of interconnector 					
	The higher the value of the index the higher system security					
	 Score calculated by linear interpolation between min and max values of the change of the indicator of all eligible projects 					

Maturity of Project Indicator (MPI)						
Reasoning	 Criterion aims to test preliminary implementation potential Favours projects which have a clear implementation plan and/or have already commenced their preparatory activities 					
Indicator	 Exact implementation potential of individual project would require detailed study of project specifics and legal and regulatory framework in the specific country Indicator based on information provided in questionnaires for each project relating to steps already undertaken at time of submission 					
Calculation	 Data to asses each project taken from online questionnaires Scores assigned to steps already undertaken ranging from consideration phase (1 point) to commissioning (5 points) 					


Maturity of Project Indicator (MPI)

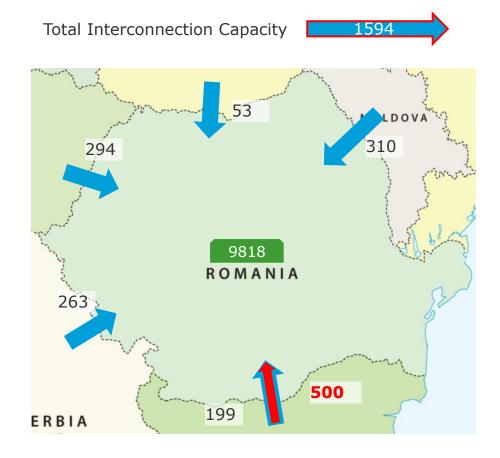
- Scores for each step already undertaken are equally distributed between all project phases
- Where project maturity is significantly different on each side of a border, progress of least developed part will be applied for calculation

Final ranking	Score
Consideration phase	1,00
Planning approval	1,36
Preliminary design studies	1,73
Market test	2,09
Preliminary investment decision	2,45
Public consultation of Art. 9	2,82
Permitting	3,18
Financing secured	3,55
Final investment decision	3,91
Tendering	4,27
Construction	4,64
Commissioning	5,00


Overview on Multi-Criteria Assessment Methodology

HHI (Herfindahl-Hirschman-Index) – Bulgaria impact

- Generator A: 4398 (56%)
 NTC RO BG: 175 (2%)
- Generator B: 216 (3%)
 NTC MK BG: 100 (1%)
- Generator C: 151 (2%)
 NTC RS BG: 116 (1%)
- Generator D: 344 (4%)
 NTC GR BG: 331 (4%)
- Generator E: 2030 (26%)
- HHI without project:
 (56%²+3%²+2%²[...]+4%²)= 0.3854
- New Interconnection capacity:
 722+500 = 1222
- HHI with the project: (53%²+3%²+2%²[...]+4%²+6%²)= 0.3442
- Project impact on Bulgaria: 0.3854-0.3442=0.0412


Above calculation only illustrates the methodology, it does not represent an actual assessment.

2nd Group Meeting

HHI (Herfindahl-Hirschman-Index) – Romania impact

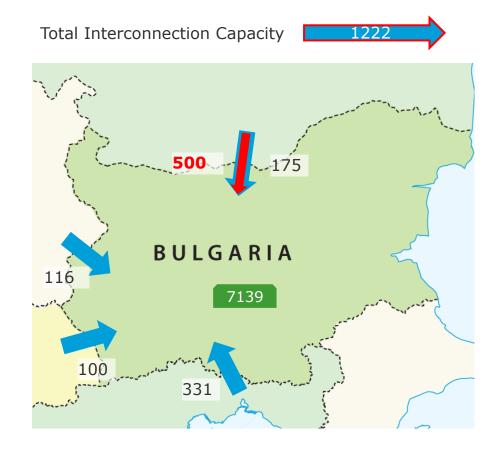
- Generator A: 1100 (10%)
 NTC HU RO: 294 (3%)
- Generator B: 4022 (37%)
 NTC MD RO: 310 (3%)
- Generator C: 723 (7%)
 NTC UA RO: 53 (0%)
- Generator D: 1734 (16%)
 NTC RS RO: 263 (2%)
- Generator E: 2214 (20%)
 NTC BG RO: 199 (2%)
- HHI without project: (10%²+37%²+7%²[...]+2%²)= 0.2193
- New Interconnection capacity:
 1094+500 = 1594
- HHI with the project: (10%²+35%²+6%²[...]+2%²+4%²)= 0.2024
- Project impact on Romania: 0.2193-0.2024=0.0169

Above calculation only illustrates the methodology, it does not represent an actual assessment.

2nd Group Meeting

HHI (Herfindahl-Hirschman-Index) – Overall impact

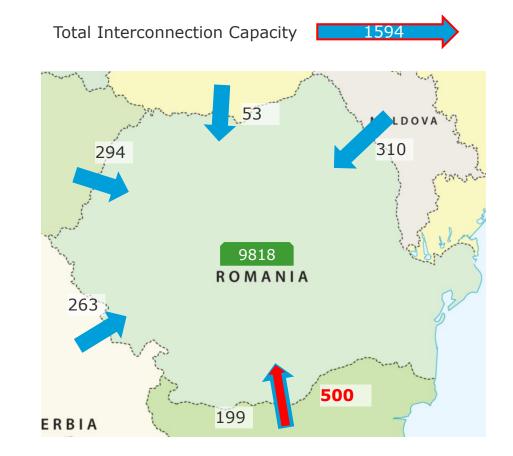
- Project Impact:
- Bulgaria: 0.0412
- Romania: 0.0169
- Average result of both countries: (0.0412+0.0169)/2 = 0,02905
- Overall project impact 0,02905
 will be transferred to a score 1-5


Above calculation only illustrates the methodology, it does not represent an actual assessment.

2nd Group Meeting

SAI (System Adequacy Index) – Bulgaria impact

- Generation Capacity: 7139
- Interconnection Capacity: 722
- System Peak Demand: 5192
- SAI without project: (7139+722-5192)/5192= 0.51
- New Interconnection capacity: 722+500 = 1222
- SAI with the project: (7139+1222-5192)/5192= 0.61
- Project impact on Bulgaria:
 0.61-0.51=0.1


Above calculation only illustrates the methodology, it does not represent an actual assessment.

2nd Group Meeting

SAI (System Adequacy Index) – Romania impact

- Generation Capacity: 9818
- Interconnection Capacity: 1094
- System Peak Demand: 8228
- SAI without project: (9818+1094-8228)/8228= 0.32
- New Interconnection capacity: 1094+500 = 1594
- SAI with the project: (9818+1594-8228)/8228= 0.39
- Project impact on Romania:
 0.39- 0.32=0.07

Above calculation only illustrates the methodology, it does not represent an actual assessment.

2nd Group Meeting

SAI (System Adequacy Index) – Overall impact

- Project Impact:
- Bulgaria: 0.1
- Romania: 0.07
- Average result of both countries: (0.1+0.07)/2 = 0.085
- Overall project impact 0.085 will be transferred to a score 1-5

Above calculation only illustrates the methodology, it does not represent an actual assessment.

Calculation of Scores for System Adequacy Index (SAI)

 Score for SAI is calculated based on linear interpolation between minimal and maximal values of indicators among all submitted eligible electricity projects

Project	Value	Score
Project 1	0,067	2,00
Project 2	0,059	1,00
Project 3	0,091	5,00
IP BG-GR	0,085	4,25
Max Value	0,09	
Min Value	0,06	
Max Score	5	
Min Score	1	
Slope	125,00	

Above calculation only illustrates the methodology, it does not represent an actual assessment.

Maturity of Project Indicator (MPI)

- Progress of Project "Interconnector Bulgaria-Romania" recorded throughout the questionnaire reached stage *Tendering* in Bulgaria, but only *Permitting* in Romania
- The progress of the project will be monitored as of stage Permitting with score 3,18

Final ranking	Score
Consideration phase	1,00
Planning approval	1,36
Preliminary design studies	1,73
Market test	2,09
Preliminary investment decision	2,45
Public consultation of Art. 9	2,82
Permitting	3,18
Financing secured	3,55
Final investment decision	3,91
Tendering	4,27
Construction	4,64
Commissioning	5,00

Electricity

Dummy Project Example – Interconnector OHL Bulgaria - Romania

Relative Ranking

	Indicators (Scores)				Weights			Indicators (Weighted Scores)				Total Score	Rank ing	
Project	СВА	нні	SAI	MPI	СВА	нні	SAI	MPI	СВА	нні	SAI	MPI		
P 1	5,00	5,00	2,00	3,91	60%	15%	15%	10%	3,00	0,75	0,30	0,39	4,44	1
P 2	1,00	2,80	1,00	4,27	60%	15%	15%	10%	0,60	0,42	0,15	0,43	1,60	4
Р3	4,30	1,33	5,00	3,55	60%	15%	15%	10%	2,58	0,20	0,75	0,36	3,88	2
IP RO-BG	4,58	1,00	3,63	3,18	60%	15%	15%	10%	2,75	0,15	0,54	0,32	3,76	3

2nd Group Meeting

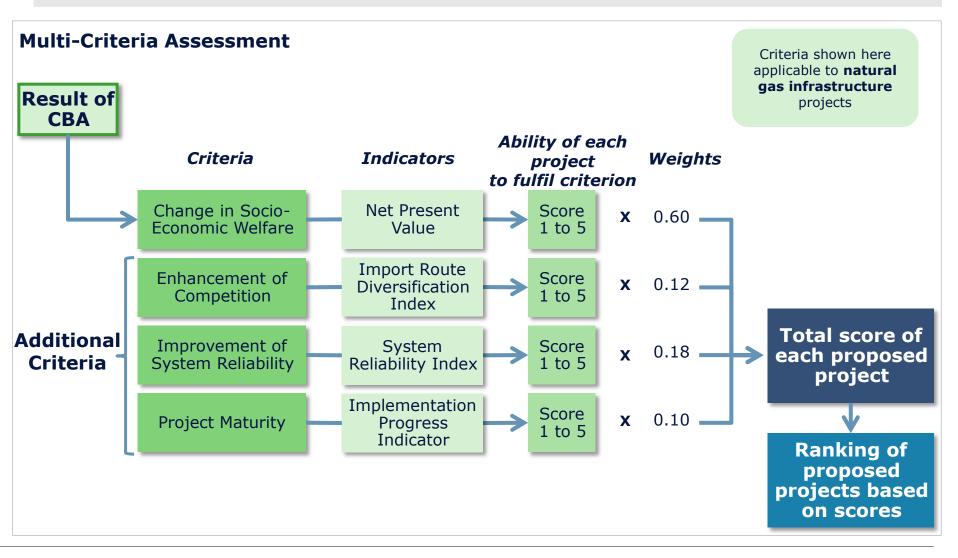
Net Present Value (NPV) – Result of economic CBA

- Within the economic CBA the change in socio-economic welfare is assessed by the following criteria:
 - market integration via the impact on wholesale price changes (convergence) resulting from reduced congestion, access to sources with lower production costs and enhancement of competition
 - security of supply related benefits measured by the change in economic welfare in the case of a gas supply disturbance
 - variation of CO₂ emissions related to changes in gas demand patterns

Import Route	Diversification Index (IDI)
	 Interconnection / LNG projects may enhance wholesale competition by providing access to alternative import capacities
Reasoning	 Transfer of monopoly rents (i.e. price-mark-ups over production costs) gained by producers / importers / traders to consumers
	 Market model (used in CBA) assumes competitive market equilibrium
Indicator	 Enhancement of competition approximated by simplified competition indicator based on system entry via interconnectors, offshore pipelines and LNG terminals
	 Import Route Diversification Index (IDI)
	 Defined as sum of squared firm technical capacities at each interconnection point, each import point (offshore pipeline) and firm technical send-out capacity at each LNG terminal
Calculation	 Calculated with and without the project as average for countries on each end of interconnector (or on national level for LNG projects)
	The higher the value of the index the higher the market concentration
	 Score calculated by linear interpolation between min and max values of the change of the indicator of all eligible projects

System Reliability Index (SRI) – Daily N-1 Security								
Reasoning	 CBA incorporates only some aspects of security of supply measured on monthly basis Additional indicator to account for daily operational flexibility and ability of the system to withstand extreme conditions 							
Indicator	 Enhancement of system flexibility approximated by simplified daily indicator for N-1 security System Reliability Index (SRI) 							
Calculation	 SRI (N-1) = (technical capacity + production capacity + max. storage deliverability + max. LNG send-out capacity) - single largest supply capacity / total daily gas demand Calculated with and without the project as average for countries on each end of interconnector (or on national level for LNG projects) The higher the value of the index the higher overall network flexibility Score calculated by linear interpolation between min and max values of the change of the indicator of all eligible projects 							

Maturity of Project Indicator (MPI)								
Reasoning	 Criterion aims to test preliminary implementation potential Favours projects which have a clear implementation plan and/or have already commenced their preparatory activities 							
Indicator	 Exact implementation potential of individual project would require detailed study of project specifics and legal and regulatory framework in the specific country Indicator based on information provided in questionnaires for each project relating to steps already undertaken at time of submission 							
Calculation	 Data to asses each project taken from online questionnaires Scores assigned to steps already undertaken ranging from consideration phase (1 point) to commissioning (5 points) 							


Maturity of Project Indicator (MPI)

- Scores for each step already undertaken are equally distributed between all project phases
- Where project maturity is significantly different on each side of a border, progress of least developed part will be applied for calculation

Final ranking	Score		
Consideration phase	1,00		
Planning approval	1,36		
Preliminary design studies	1,73		
Market test	2,09		
Preliminary investment decision	2,45		
Public consultation of Art. 9	2,82		
Permitting	3,18		
Financing secured	3,55		
Final investment decision	3,91		
Tendering	4,27		
Construction	4,64		
Commissioning	5,00		

Overview on Multi-Criteria Assessment Methodology

IRD (Import Route Diversification) – Bulgaria impact

- Total import capacity of Bulgaria: 1214 GWh/d
- IRD without project: (100*1214/1321)²= 10000
- New total import capacity: 1214+134= 1455 GWh/d
- IRD with the project: (100*1214/1455)²+(100*134/1455)²= 8209
- Project impact on Bulgaria:
 10000 8209 = 1791

Above calculation only illustrates the methodology, it does not represent an actual assessment.

2nd Group Meeting

IRD (Import Route Diversification) – Greece impact

- Total import capacity of Greece: 107+208= 315 GWh/d
- IRD without project: (100*107/315)²+(100*208/315)²= 5514
- New total import capacity: 107+208+134= 449 GWh/d
- IRD with the project: (100*107/449)²+(100*208/449)² +(100*134/449)²= 3605

Project impact on Greece:
 5514 - 3605= 1909

Above calculation only illustrates the methodology, it does not represent an actual assessment.

2nd Group Meeting

IRD (Import Route Diversification) – Overall impact

- Project Impact:
- Bulgaria: 1791
- Greece: 1909
- Average result of both countries: (1791+1909)/2=1850
- Overall project impact 1660 will be transferred to a score 1-5

Above calculation only illustrates the methodology, it does not represent an actual assessment.

Calculation of Scores for Import Route Diversification Index (IRD)

 Score for IRD is calculated based on linear interpolation between minimal and maximal values of indicators among all submitted eligible electricity projects

Project	Value	Score
Project 1	1700	1,00
Project 2	1750	1,67
Project 3	2000	5,00
IP BG-GR	1849	2,99
Max Value	2000,00	
Min Value	1700,00	
Max Score	5	
Min Score	1	
Slope	0,01	

Above calculation only illustrates the methodology, it does not represent an actual assessment.

SRI (System Reliability Index) – Bulgaria impact

- IP: 1214 GWh
- NP: 11 GWh
- UGS: 34 GWh
- LNG: N/A
- I_m: 1214
- D_{max}: 168
- SRI without: (1214+11+34-1214)/168 = 29%
- SRI with: (1214+134+11+34-1214)/168= 108%
- **Project Impact**: 108% 29% = 80%

then to be transferred to a score 1-5

Above calculation only illustrates the methodology, it does not represent an actual assessment.

2nd Group Meeting

SRI (System Reliability Index) – Greece impact

- IP: 107 GWh
- NP: 6 GWh
- UGS: 10 GWh
- LNG: 208
- I_m: 208
- D_{max}: 350
- SRI without: (107+6+10+208-208)/350 = 35%
- SRI with: (107+134+6+10+208-208)/350 = 73%
- **Project Impact**: 73% 35% = 38%
 - then to be transferred to a score 1-5

Above calculation only illustrates the methodology, it does not represent an actual assessment.

SRI (System Reliability Index) – Overall impact

- Project Impact:
- Bulgaria: 80%
- Greece:38%
- Average result of both countries: (80+38)/2=59 %
- Overall project impact 59% will be transferred to a score 1-5

Above calculation only illustrates the methodology, it does not represent an actual assessment.

Maturity of Project Indicator (MPI)

- Progress of Project "Interconnector Bulgaria-Greece" recorded throughout the questionnaire reached stage *Tendering* in Bulgaria, but only *Permitting* in Greece
- The progress of the project will be monitored as of stage Permitting with score 3,18

Final ranking	Score
Consideration phase	1,00
Planning approval	1,36
Preliminary design studies	1,73
Market test	2,09
Preliminary investment decision	2,45
Public consultation of Art. 9	2,82
Permitting	3,18
Financing secured	3,55
Final investment decision	3,91
Tendering	4,27
Construction	4,64
Commissioning	5,00

Above calculation only illustrates the methodology, it does not represent an actual assessment.

Relative Ranking

	Indicators (Scores)				Weights			Indicators (Weighted Scores)				Total Score	Rank ing	
Project	СВА	IRD	SRI	MPI	СВА	IRD	SRI	MPI	СВА	IRD	SRI	MPI		
P 1	1,00	1,00	1,00	3,91	60%	12%	18%	10%	0,60	0,12	0,18	0,39	1,29	4
P 2	5,00	1,67	3,56	4,27	60%	12%	18%	10%	3,00	0,20	0,64	0,43	4,27	1
Р3	1,76	5,00	2,95	3,55	60%	12%	18%	10%	1,06	0,60	0,53	0,36	2,54	3
IP BG-GR	3,13	2,99	5,00	3,18	60%	12%	18%	10%	1,88	0,36	0,90	0,32	3,45	2

REKK www.rekk.hu

Borbála Takácsné Tóth

Senior research associate

REKK (REKK Kft.) Po. Box 1803 1465 Budapest Hungary

E-Mail: borbala.toth@rekk.hu **Phone:** +36-1-482-7070

DNV GL www.dnvgl.com

Dr. Daniel Grote

Senior Consultant Policy & Regulation

DNV GL Energy (KEMA Consulting GmbH) Kurt-Schumacher-Str. 8 53113 Bonn Germany

E-Mail: Daniel.Grote@dnvgl.com **Phone:** +49-228-4469049

DNVG