

Selection of Projects of Energy Community Interest and Projects of Mutual Interest (PECIs and PMIs)

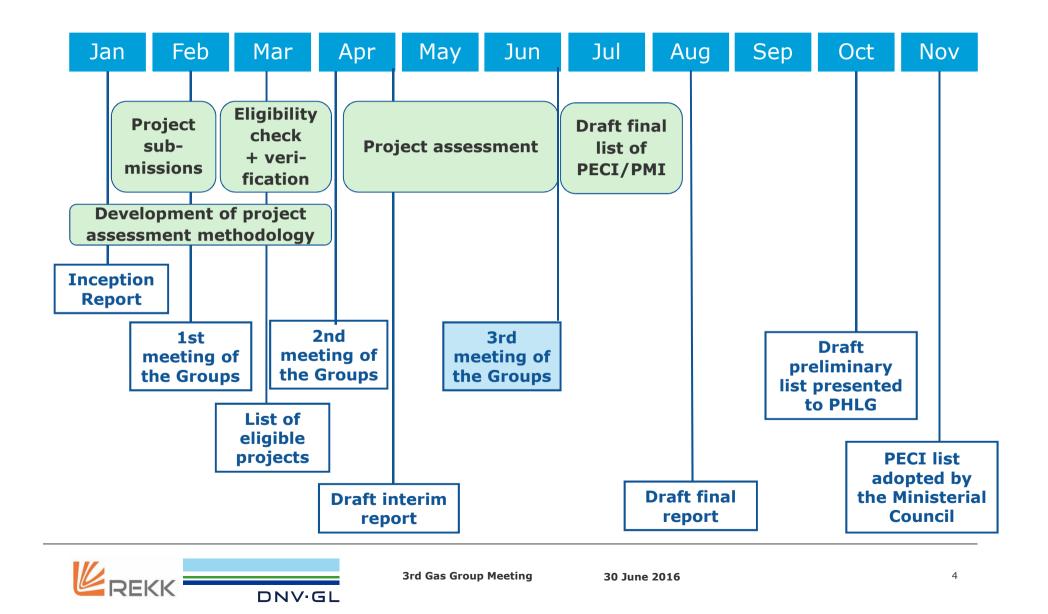
Draft results – gas infrastructure projects

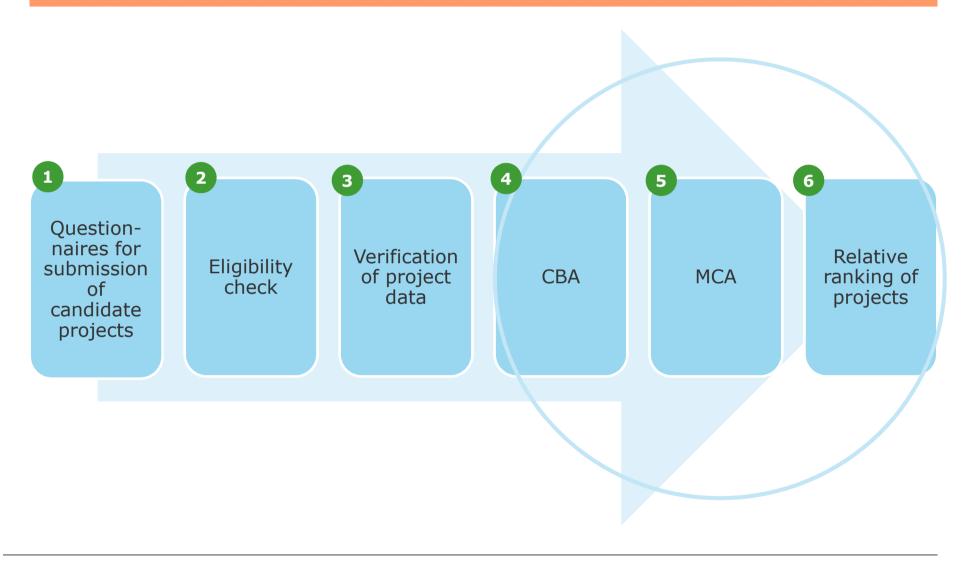
Presentation REKK / DNV GL

Vienna 30.06.2016

Agenda

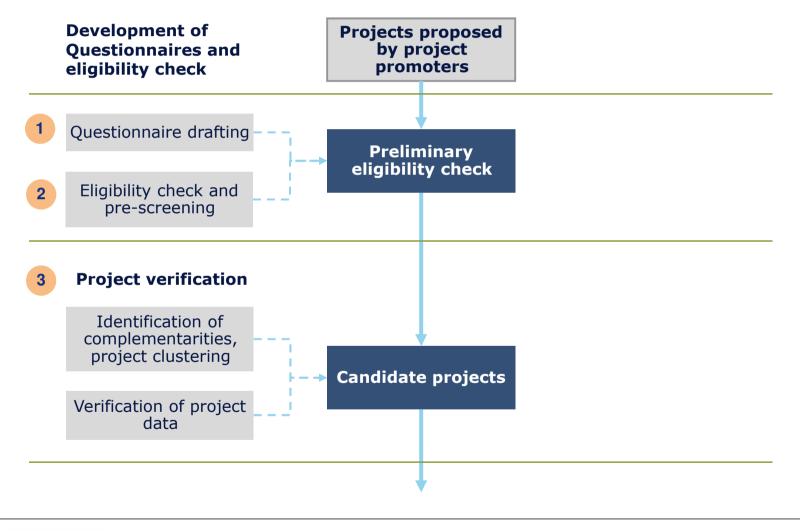
- 1. Overview on Assessment Methodology
- 2. Submitted Projects and Results of Project Verification
- 3. Gas Market Modelling
 - Input data and main assumptions
 - Reference case scenario for 2030
 - Evaluation of CO₂ emissions
- 4. Multi-Criteria Assessment
 - Indicators and scoring
- 5. Assessment Results
 - Cost benefit results (NPV)
 - Multi criteria assessment (scores and relative ranking)
- 6. Sensitivity Analysis
- 7. Assessment Results for Individual Projects



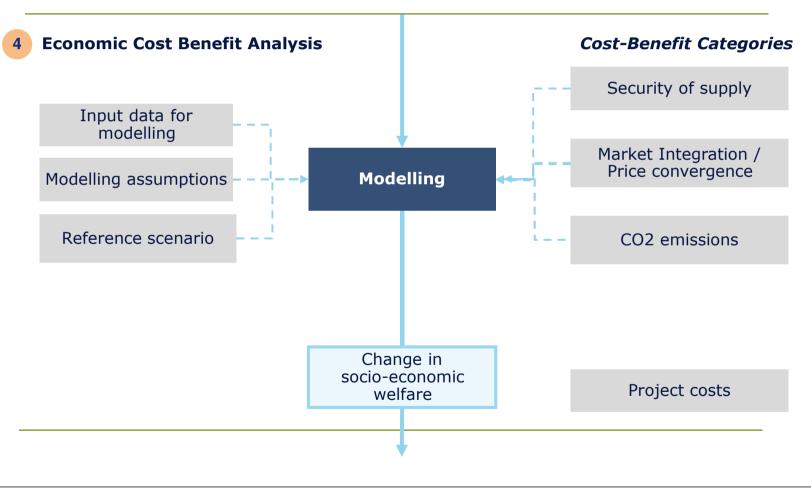


Assessment Methodology

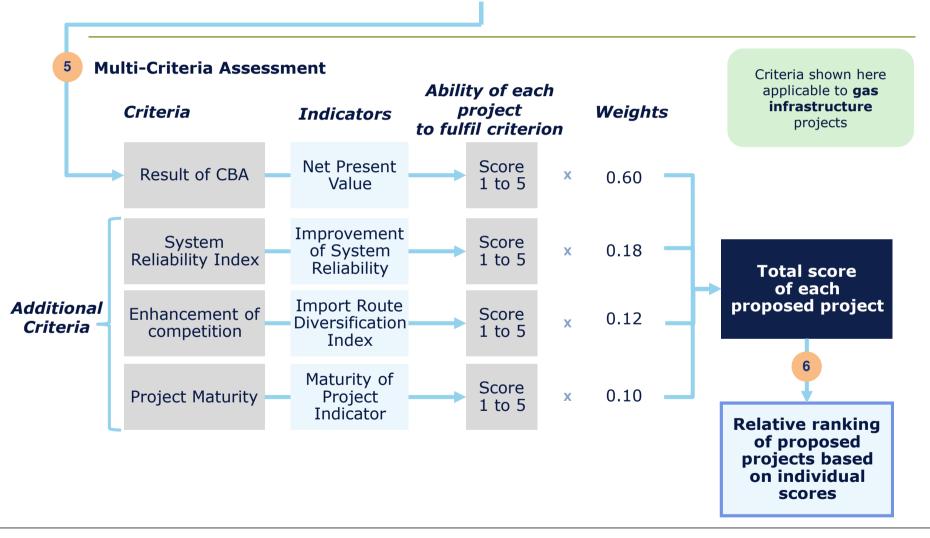
Project Timetable



Project Workflow



Overview of the Project Assessment Methodology



Overview of the Project Assessment Methodology

Overview of the Project Assessment Methodology

Verification of Projects

Projects submitted by categories

	Electricity trans- mission	Electricity storage	Gas trans- mission	Gas Storage	LNG	Smart Grid	Oil	Total
Submitted projects	13	0	16	0	1	3	1	34
Eligible projects	12	-	16	\ - (1	0	1	30
Submitted investment cost	Ca.1200 million €		Ca. 2350 million €				490 million €	Ca.4040 million €

- Out of the 34 submitted projects two electricity and three smart grid projects did not meet the criteria of the adopted Regulation
- All gas projects and the only oil project submitted qualified for further evaluation and data verification.
- Submitted investment CAPEX for all projects: 4000 million €, more than half of it goes to gas infrastructure. CAPEX figure for gas projects were submitted only for parts of the projects, after including total cost, CAPEX of gas projects went up from 2350 million € to 5610 million €.

30 June 2016

Illustrative location of Submitted Gas Projects

DNVGL

Project code	Project name
GAS_01	Interconnector BiH-HR (Slobodnica- Brod-Zenica)
GAS_02	Interconnector BiH HR (Licka JesenicaTrzacBosanska Krupa)
GAS_03	Interconnector BiH HR (Ploce- MostarSarajevo / ZagvozdPosusje Travnik)
GAS_04A	Interconnector Macedonia Bulgaria
GAS_04B	Interconnector Macedonia Greece
GAS_05	Interconnector Macedonia Albania
GAS_07	TESLA project
GAS_08	Interconnector Serbia-Romania
GAS_09	Gas Interconnector Serbia Bulgaria
GAS_10	Gas Interconnector Serbia Croatia
GAS_11	Gas Interconnector Serbia Macedonia
GAS_12	Gas Interconnector Serbia Montene gro (incl. Kosovo)
GAS_13	Albania Kosovo Gas Pipeline (ALKOGAP)
GAS_14	Gas Interconnection Poland Ukraine
GAS_15	Development of the HU to UA firm capacity
GAS_16	Ionian Adriatic Pipeline
GAS_LNG_17	EAGLE LNG and Pipeline

3rd Gas Group Meeting

List of modelled gas projects I.

Project code	Project name	Project promoter	From A	То В	Capacity from A to	Capacity from B to	Commissi oning
					В	Α	date
						GWh/day	year
GAS_01	Interconnector BiH-HR (Slobodnica-Brod-Zenica)	BHGas Ltd	BA	HR	35	44	2023
GAS_02	Interconnector BiH HR (Licka JesenicaTrzacBosanska Krupa)	BHGas Ltd	BA	HR	0	73	2023
GAS_03	Interconnector BiH HR (Ploce- MostarSarajevo / Zagvozd- Posusje Travnik)	BHGas Ltd	BA	HR	38	73	2021
GAS_04A	Interconnector Macedonia Bulgaria	MER JSC Skopje	BG	MK	63	0	2020
GAS_04B	Interconnector Macedonia Greece	MER JSC Skopje	GR	MK	63	0	2020
GAS_05	Interconnector Macedonia Albania	MER JSC Skopje	MK	AL	56	56	2020
GAS_07	TESLA project	JSC GAMA	GR	MK	675	675	2020
		Skopje	MK	RS	640	640	2020
			RS	HU	582	582	2020
			HU	AT	524	524	2020
GAS_08	Interconnector Serbia-Romania	JP Srbijagas	RS	RO	35	35	2020
GAS_09	Gas Interconnector Serbia Bulgaria	JP Srbijagas	BG	RS	39.44	39.44	2019
GAS_10	Gas Interconnector Serbia Croatia	JP Srbijagas	HR	RS	32.8	32.8	2023

List of modelled gas projects II.

Project code	Project name	Project promoter	From A	То В	В	Capacity from B to A GWh/day	Commissio ning date year
GAS_11	Gas Interconnector Serbia Macedonia	JP Srbijagas and MER JSC Skopje	RS	МК	10.4	10.4	2021
GAS_12	Gas Interconnector Serbi a Montenegro (incl. Kosovo) - Section Nis (Doljevac) - Pristina	JP Srbijagas	RS	KO*	25.4	25.4	2023
GAS_13	Albania Kosovo Gas Pipeline (ALKOGAP)	Ministry of Energy & Industry of Albania	AL	KO*	53	53	2022
GAS_14	Gas Interconnection Poland Ukraine	GAZSYSTEM S.A.; UKRTRANSGAZ	PL	UA	245	215	2020
GAS_15	Development of the HU to UA firm capacity	UKRTRANSGAZ	HU	UA	178	0	2016
GAS_16	Ionian Adriatic Pipeline	Plinacro	AL ME	ME HR	150 150	150 150	2021 2021
GAS_LNG _17	EAGLE LNG and Pipeline	TransEuropean Energy B.V., Sh.A	AL FSRU	IT AL	300 150	-	2020 2020

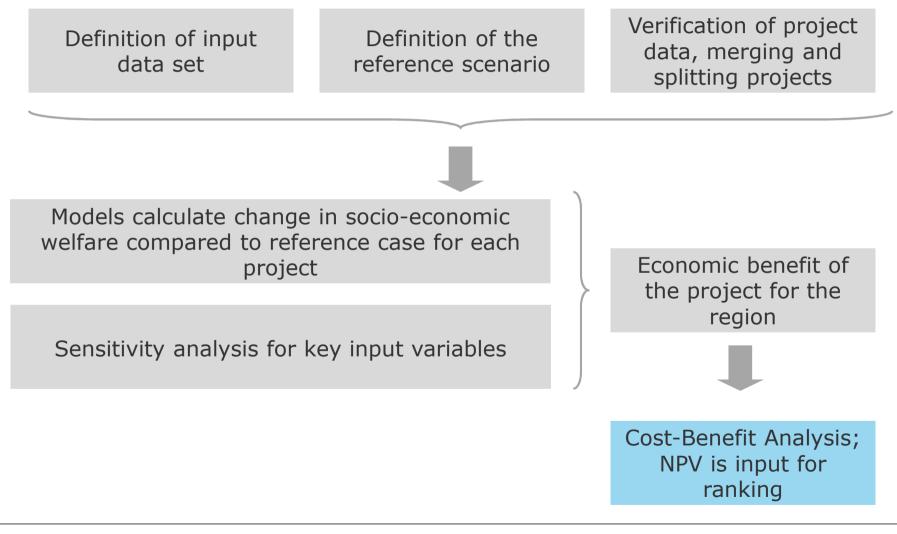
Verification of Cost Data

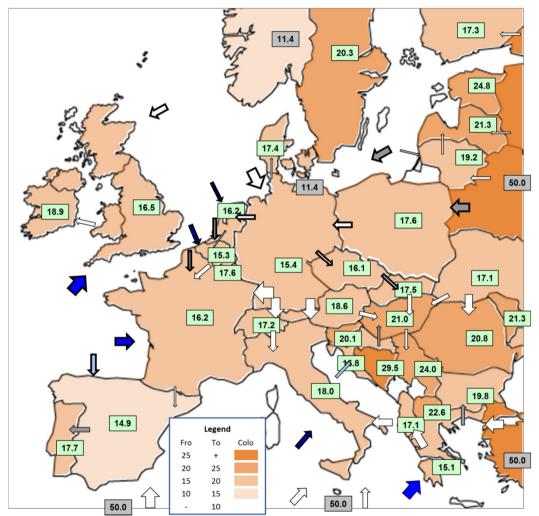
2015 indexed unit investment cost of transmission pipelines commissioned in 2014 (average values)

Pipeline diameter	<16"	16-27"	28-35"	36-47"	48-57"
Average unit cost, real 2015 €/km	643 936	746 801	847 966	1 427 041	2 098 567

Source: ACER

- CAPEX cost for gas projects was cross-checked with ACER's Report On Unit Investment Cost Indicators And Corresponding Reference Values For Electricity And Gas Infrastructure - Gas Infrastructure Annex 2015 real € investment cost (€/km)
- Projects that have submitted CAPEX seems generally to be in line with ACER's cost data, some clarifications were needed.
- Some projects failed to provide CAPEX figures. If no CAPEX was provided, ACER report average cost figures were used for project evaluation.
 This was the case for GAS_07 (TESLA), GAS_08 (RS-RO for the RO part), GAS_12 (RS-ME) for the part outside RS)




Gas Market Modelling

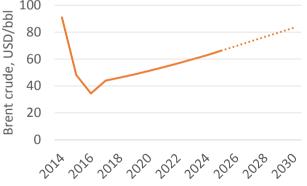
The process of modelling

European Gas Market Model – Major Characteristics

- Whole Europe (35 countries) is modelled
- Competitive prices by countries; price modelled for each 12 months
- Trade is based on long term contracts and spot trade within the EU and with exogenous countries and global LNG market (NO, RU, TR, LNG)
- Natural gas flows and congestions on interconnectors
- Physical constraints are interconnection capacities (transmission tariffs are also included)
- Trade constraints: TOP obligations with flexibility
- Domestic production and storage facilities are included
- Arrows: modelled gas flows
- LNG market representation is linked to Asian LNG prices

3rd Gas Group Meeting

30 June 2016


Key Modelling Assumptions and Data Sources

	2016-2020	2021-2025	2026-2030	Source
Demand, production	TYNDP 2015	TYNDP 2015 (revised) forecast	TYNDP 2015 (revised) forecast	ENTSO-G TYNDP 2015
Infrastructure (LNG, pipeline, storage)	Existing infrastructure + new projects under construction (PL_LNG)	FID projects based on ENTSO-G TYNDP 2016-2020 + HR_LNG	ES_LNG	ENTSO-G GIE, GSE, GLE ENTSO-G TYNDP 2015
LTC-s	Current prices, Current routes Current ACQs Flexibility of LTCs is uniform (30%), except for energy island countries	LTC prices are adjusted to oil forecast price (according to assumed formula), Russian LTCs do not expire	LTC prices are adjusted to oil forecast price (according to assumed formula)	Publicly available sources (press, Cedigas, Quarterly report) double checked with Commission LTC data
LNG	By 2020 100 bcm LNG enters Europe	By 2025 140 bcm LNG enters Europe	By 2030 140 bcm LNG enters Europe	Bloomberg, expert opinion

Further Modelling Assumptions

- Infrastructure tariffs: TSO/SSO publications
 - We assume tariffs at their actual (2015 December) level
- New infrastructure is modelled with a uniform 2 €/MWh tariff
- Outside market prices are set exogenously
 - Turkish and Algerian markets trade only through long term contracts the 50€/MWh price on the border is the spot trade price (we assume that there is no spot trade)
 - Russian spot gas is allowed in a low quantity (TTF price + 2 €/MWh)
 - Norwegian spot price is set based on TTF price (seasonal fluctuation is also assumed)
 - Oil price forcast is based on World Bank

Source: World Bank Commodities price forecast, 01.20.2016. and for 2025-2030 REKK

Input data for the Energy Community Contracting Parties

Gas demand TWh/year							
	2015	2020	2025	2030			
Albania	0	4,9	8.82	11.76			
Bosnia	1.66	1.66	8.37	8.92			
Kosovo*	0	0	3.92	5.88			
Montenegro	0	0	0.26	0.4			
Moldova	10	11	12	13			
FYR of							
Macedonia	1.96	6.61	6.85	6.88			
Serbia	22	27	30	35			
Ukraine	369	368	371	375			

Gas production TWh/year						
	2015	2020	2025	2030		
Albania	0	0	0	0		
Bosnia	0	0	0	0		
Kosovo*	0	0	0	0		
Montenegro	0	0	0	0		
Moldova	0	0	0	0		
FYR of						
Macedonia	0	0	0	0		
Serbia	5.43	3.72	2.78	1.9		
Ukraine	208.1	222.5	237.0	251.4		
			DEI/I			

Source: ENTSOG, project promoters, REKK

Long term contract with Russia						
TWh/year	ACQ					
Albania	0					
Bosnia	1.66					
Kosovo*	0					
Montenegro	0					
Moldova	10					
FYR of Macedonia	1					
Serbia	up to 50					
Ukraine	60					

Pipeline	From	То	Maximu	Ta	riff
Pipeime	market	market	m flow	Entry	Exit
			GWh/d	€/MWh	€/MWh
HU-RS	HU	RS	141	1.06	2.00
RS-BA	RS	BA	16	1.56	2.85
BG-MK	BG	MK	27	1.96	0.90
UA-HU	UA	HU	600	1.25	2.55
HU-UA	HU	UA	0	0.00	0.00
UA-MD	UA	MD	73	2.22	1.95
UA-PL	UA	PL	0	1.28	1.46
PL-UA	PL	UA	45	0.00	0.94
UA-SK	UA	SK	2 288	0.80	2.67
SK-UA	SK	UA	265	0.00	0.63
UA-RO	UA	RO	855	1.45	2.17
RO-MD	RO	MD	67	1.00	1.00
MD-RO	MD	RO	67	1.00	1.00

3rd Gas Group Meeting

By 2020	New interconnector		Capacity (GWh/day)
	Biriatou	FR-ES	60
		ES-FR	55
	Alveringem-Maldegem	FR-BE	270
	Griespass-Passo Gries	IT-CH	421
	Ellund	DE-DK	40.56
	Ruse-Giurgiu	BG-RO	14.38
		RO-BG	14.38
	LNG	Country	Capacity (GWh/day)
	Revythoussa extension	GR	+80.38
	Dunkerque	FR	348
	Klaipeda extension	LT	+27.1
	Krk Terminal (non FID)	HR	108
By 2025	LNG	Country	Capacity (GWh/day)
	Musel	ES	+214
			Sourc
	3rd Gas Group Meeting	30 June 2016	

New Infrastructures in the reference

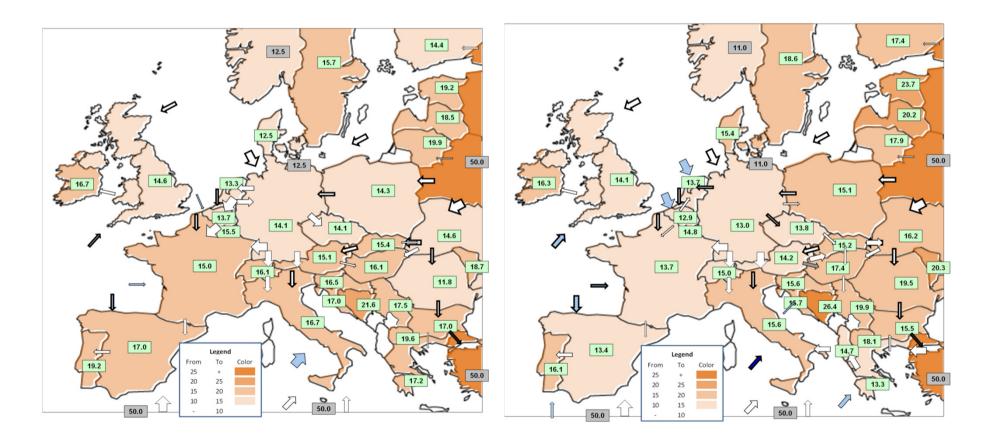
We consider TAP to be a crucial infrastructure in the region

 Many gas projects in the region are dependent on Trans-Atlantic Pipeline. This is why we propose to analyse the projects with having TAP in the reference (2020)

New interconnector		Capacity (GWh/day)
Trans Adriatic pipeline (TAP)	TR-GR GR-AL AL-IT	803
Interconnector Greece Bulgaria (IGB)	GR-BG BG-GR	90

New LTCs	to	ACQ (bcm/year)
SOCAR	Italy Greece Bulgaria	8 1 1

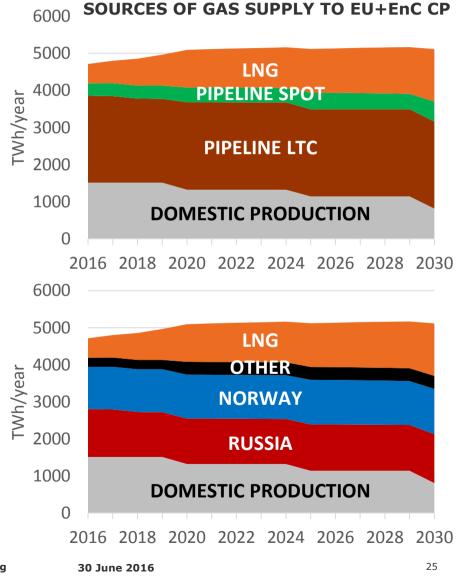
Assessed Geographical Area – Same for All Project Types


- Ministerial Council Decision 2015/09/MC-EnC Annex IV./(6)
 - "The area for the analysis of an individual project shall cover all Contracting Parties and Member States, on whose territory the project shall be built, all directly neighbouring Contracting Parties and Member States and all other Contracting Parties and Member States significantly impacted by the project."
 - Our proposal for the definition of area for the analysis:
 - All Energy Community Contracting Parties
 - Neighbouring EU Member States (Bulgaria; Croatia; Greece; Hungary; Italy; Poland; Romania, Slovakia)

Model validation for 2016 – reference building for each year until 2030

2016 reference prices (€/MWh)

2030 reference prices (€/MWh)



3rd Gas Group Meeting

30 June 2016

Modelling the European gas market to 2030 – Best estimate scenario

- LNG will play a more pronounced role in the supply mix of Europe:
 - From 500 TWh/year, LNG imports to Europe will rise to 1000 TWh in 2020 and to 1400 TWh in 2030
- Russia will react to the LNG market and keep its market share as a supplier to Europe
 - Russian sales to Europe will remain at the same level through the period, but the share of spot sales will increase
 - Spot sales will target Germany, using the Nord Stream for spot flows
- Domestic production in Europe will drop by nearly 50% to 2030
- Demand in Europe will increase by ~20% from 2016 to 2030

3rd Gas Group Meeting

Components of Net Present Value Calculation

- NPV = 0.95*Total welfare change(normal)+ 0.05*Total welfare change (SOS) -Investment cost + (CO₂)
- Modelled welfare components: Total welfare change= CS + PS+ TSO + LTC holder + SSO + LSO
 - CS: Consumer surplus change in the countries of the area of analysis compared to reference
 - PS: Producer surplus change in the countries of the area of analysis
 - TSO, SSO, LSO: Change in profit
 - Change in LTC contract holder's profit
 - Investment cost: verified investment cost
 - CO₂: Calculated as described in next slide
- When calculation the NPV 25 years of lifetime and a residual value of zero are applied → ACER recommendation
- Values between 2016-2030 are modelled by EGMM yearly; after 2030 values are kept constant → harmonized with ENTSOG methodology
- Real social discount rate: 4 % \rightarrow ENTSOG methodology

Estimating the CO2 emission effect of increased gas consumption

 CO₂ emission effect of increased gas 		Δ ktCO2/TWh
consumption is based on the 2009-2013	AL	30.8
energy balances of the EnC Contracting Parties	BA	-93.8
and affected Member States	BG	-68.6
 Main accumptions of CO waster; 	GR	-88.0
 Main assumptions of CO₂ vector: 	HR	-30.8
 Energy consumption of transport and non- 	HU	-29.2
energy use of fuels is not considered	IT	-28.8
 The country's total energy consumption is 	KO*	-113.6
kept constant	MD	63.1
kept constant	ME	-20.6
 Additional 1 TWh of gas consumption crowds 	MK	-98.5
out other fuels in their ratio in the primary	PL	-64.6
energy mix	RO	-35.4
 Although the effect is negative in most 	RS	-88.4
countries as suggested by intuition, in MD and	SK	-41.9
AL additional gas consumption increases CO ₂	UA	-41.0
emissions	Year	CO2 price, €/t

 The reason is that additional gas consumption crowds out sources which emit less CO₂

2020	9.21
2025	15.61
2030	22.00

2016

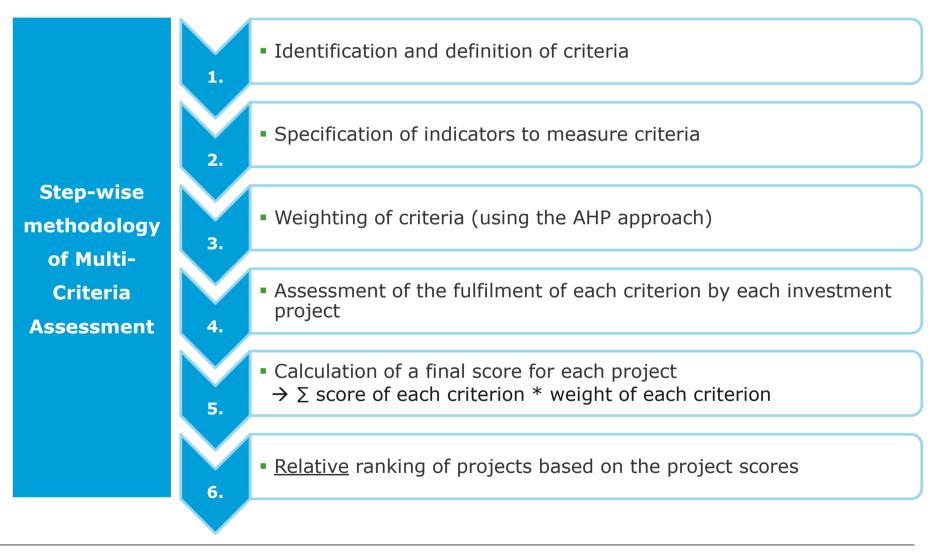
4.10

TOOT vs. PINT

- REF(PINT) scenario includes all infrastructure elements of the current gas infrastructure + FID projects (investments into gas infrastructure is more uncertain/implementations are delayed) + HR LNG
- REF(TOOT) scenario includes all infrastructure elements of Ref (Pint) and all PECI/PMI candidates. From this pool PECI/PMI candidates are taken out one-byone.

	PINT	тоот
Base scenario	REF(Pint)	REF(Toot)
Assessed scenario	REF(Pint) + assessed project	REF(Toot) – assessed project
Calculating the change of the assessed project	Assessed SC - REF(Pint)	REF(Toot) - Assessed SC

Calculating the change in welfare/prices the following rules are followed:



Multi Criteria Assessment

Overview on Multi-Criteria Assessment Methodology

Project Assessment Criteria

1		 Incremental welfare changes resulting from individual investment projects are estimated as regards the project's impact on
Chang soci		– market integration / price changes
econo	omic	 improvement of security of supply
welfa	are	– reduction of CO2 emissions
609	%	 Calculation of the economic net-present value (NPV) discounting the incremental costs and benefits of each investment project back to their present values
2 Enhance of		 Incremental enhancement of competition is calculated as change in the simplified Import Route Diversification (IRD) index with and without the individual project as aggregate of the impacts in the countries on each end of interconnector
Compe	tition	The higher the value of the index the higher the market concentration
129	%	$IRD = \sum_{i=1}^{n} \left(\frac{\text{tech. interconnection capacity at each border}}{\text{total system entry capacities}}\right)^{2} + \sum_{i=1}^{n} \left(\frac{\text{tech. send-out capacity at each LNG terminal}}{\text{total system entry capacities}}\right)^{2}$

Project Assessment Criteria

3 Improvement of System	 The incremental <i>improvement of overall system reliability</i> with regards to the daily operational flexibility and ability of the system to withstand extreme conditions is calculated as the change of the System Reliability Index (SRI) with and without the individual project
Reliability	The higher the value of the index the higher the level of system reliability
18%	SRI =
	(import capacities + production + storage + LNG) – single largest infrastructure
	daily peak demand

Project Assessment Criteria

(4)	 The Progress in Implementation Index (MPI) assesses the preliminary implementation potential of each individual project based on information provided in questionnaires:
	 Commissioning = 5 points (maximum score)
	 Construction = 4.63 points
	 Tendering = 4.27 points
Progress in	 Final Investment Decision (FID) = 3.90 points
Implemen- tation	 Financing Secured = 3.54 points
	 Permitting = 3.18 points
100/	- Public consultation of Art. $9 = 2.81$ points
10%	 Preliminary investment decision = 2.45 points
	 Market test = 2.09 points
	 Preliminary design studies = 1.72 points
	 Planning approval = 1.36 points
	 Consideration phase or no information provided = 1 point (minimum score)

Calculation and Scoring of Indicators

Calculation of Indicators SRI, IRD	 Indices calculated with and without the individual project for the year of commissioning of the project as aggregate of the impacts in the countries on each end of the interconnector
	- Ceare of 1 and 5 accienced to projects with the employet and largest change
	 Score of 1 and 5 assigned to projects with the smallest and largest change in the indicator respectively
	 Scores of projects with changes in-between calculated by linear interpolation between min and max values of the change of the indicator
Scoring of Indicators NPV, SRI, IRD	 Where changes of an individual indicator are significantly larger for one project than for all other projects this project has been treated as an outlier and the interpolation been conducted between all other projects
	 Negative NPVs scored with 0
	 SRI and IRD for non-gas markets scored with 1 reflecting a dependency on a single interconnection pipeline

Assessment Results

Explanatory Notes on Assessment Results

- Assessment conducted from overall economic point of view (impact of each project on *socio-economic welfare*)
- Assessment accounts for all effected stakeholders in the Contracting Parties of the Energy Community and neighbouring EU countries
- Assessment does <u>not</u> aim to nor can substitute detailed project feasibility studies focusing on the specific details related to every single project
- Environmental impacts of individual projects (e.g. on hydrology, soil, fauna or flora) can only be assessed in a detailed project specific environmental impact assessment, which is outside the scope of this study
- Assessment does <u>not</u> considering criteria only relevant for investor of project, such as the commercial strength / attractiveness of the project (which would also require an evaluation of the specific regulatory framework)
- Objective of assessment: relative ranking of all projects
 - who comply with the requirements of 347/2013 as adopted by the Ministerial Council Decision, and
 - whose long-term benefits outweigh their costs

Explanatory Notes on Assessment Results

- Aggregated results presented here estimate regional welfare impact for all stakeholders, with (as agreed) equal weights on welfare change of all groups of stakeholders (consumer, producers, TSO)
- **Project specific information** / data has been taken from questionnaires
 - Where no further information could be obtained from project promoters or has been provided to us, the questionnaires have been the general source for project specific data
 - Where provided data has been questionable further verification checks have been conducted, including communication with the project promoters
 - Where data has not been provided assumptions (e.g. on cost data) have been taken
- As a results of the project assessment a **relative ranking** of all eligible projects is provided
 - Scores or ranks do not indicate whether project is beneficial as such, they only provide an indication on whether the realization of other projects would be more or less beneficial than the realization of the specific project
 - Since ranking only shows relative benefit of a project, difference in ranks does not provide any information on the absolute difference of the welfare between two projects
 - Since assessment approaches slightly differ, comparisons of results between electricity and gas cannot be made (e.g. whether electricity projects on rank 1 to 5 are more/less/equally beneficial than gas projects on rank 1 to 5)

Results, projects CBA of the best estimate scenario – PINT (REAL 2016 M€)

Project Code	Project name	Year of Commissi oning	Normal Welfare change (m€)	SOS Welfare change (m€)	Total Welfare change (m€) (95%normal +5%SOS)	CO2 benefit (m€)	Total inv. costs (m€)	NPV (m€)
GAS_01	BA-HR	2023	408	405	408	49	XXXX	362
GAS_02	BA-HR	2023	408	405	408	49	XXXX	407
GAS_03	BA-HR	2021	414	415	414	48	XXXX	346
GAS_04A	MK-BG	2020	11	10	11	3	XXXX	-39
GAS_04B	MK-GR	2020	43	52	43	13	XXXX	-51
GAS_05	MK-AL	2020	-146	-153	-146	-2	XXXX	-323
GAS_07	TESLA	2020	609	628	610	117	XXXX	-2617
GAS_08	RS-RO	2020	0	12	1	-1	XXXX	-32
GAS_09	RS-BG	2019	680	614	676	36	XXXX	596
GAS_10	RS-HR	2023	526	479	524	25	XXXX	428
GAS_11	RS-MK	2021	24	32	24	2	XXXX	4
GAS_12	RS-KO*	2023	575	548	574	71	XXXX	576
GAS_13	AL-KO*	2022	653	624	652	85	XXXX	537
GAS_14	PL-UA	2020	641	722	645	49	XXXX	454
GAS_15	HU-UA	2020	0	0	0	0	XXXX	-20
GAS_16	IAP	2021	43	43	43	0	XXXX	-562
GAS_17	EAGLE LNG	2020	0	0	0	0	XXXX	-295

Negative NPV projects marked red score 0 in the MCA

Multi criteria assessment results – Scores and Ranking

	Project ID	Project Name	Result of the CBA (NPV) 60%	Improvement of System Reliability (SRI) 18%	Enhancement of Competition (IRD) 12%	Project Maturity (MPI) 10%	Total Score	Rank
	a aa							-
	Gas_09	Gas Interconnector Serbia Bulgaria	5.00	1.18	2.01	1.36	3.59	1
	Gas_12	Gas Interconnector Serbia Montenegro (incl. Kosovo) Section Nis (Doljevac) Pristina	4.76	1.00	1.00	1.00	3.26	2
	Gas_13	AlbaniaKosovo Gas Pipeline (ALKOGAP)	4.29	1.00	1.00	1.36	3.01	3
	Gas_14	Gas Interconnector Poland Ukraine	3.29	1.12	1.29	1.73	2.50	4
Se	Gas_10	Gas Interconnector Serbia Croatia	2.98	1.12	2.29	1.00	2.36	5
Ca	Gas_02	Interconnection Pipeline BiH HR (Licka JesenicaTrzacBosanska Krupa)	2.74	1.10	1.73	1.00	2.15	6
refernce	Gas_01	Interconnection pipeline BiH-HR (Slobodnica- Brod-Zenica)	2.19	1.17	2.49	1.00	1.93	7
refe	Gas_03	Interconnection Pipeline HR-BiH (Ploce- MostarSarajevo / ZagvozdPosusje Travnik)	2.00	1.20	2.21	1.00	1.78	8
<u>Ц</u> .	Gas_07	TESLA	0.00	5.00	5.00	1.00	1.60	9
ts	Gas_16	Ionian Adriatic Pipeline	0.00	5.00	2.07	1.73	1.32	10
arke	Gas_17	EAGLE LNG and pipeline	0.00	5.00	2.10	1.00	1.25	11
arl	Gas_11	Gas Interconnector Serbia Macedonia	1.00	1.12	2.53	1.00	1.20	12
Ê	Gas_05	Gas Interconnector Macedonia Albania	0.00	3.59	2.61	1.00	1.06	13
S	Gas_04B	Gas Interconnector Macedonia Greece	0.00	1.44	2.25	1.73	0.70	14
ga	Gas_08	Gas Interconnector Serbia Romania	0.00	1.09	2.03	1.00	0.54	15
0	_	Gas Interconnector Macedonia Bulgaria	0.00	1.14	1.00	1.73	0.50	16
Ζ	Gas_15	Development of HU to UA firm capacity	0.00	1.00	1.01	1.00	0.40	17

3rd Gas Group Meeting

30 June 2016

39

Multi criteria assessment results – Relative Ranking

Rank	Project ID	Project Name	
1	Gas_09	Gas Interconnector Serbia Bulgaria	
2	Gas_12	Gas Interconnector Serbia Montenegro (incl. Kosovo) Section Nis (Doljevac) Pristina	
3	Gas_13	AlbaniaKosovo Gas Pipeline (ALKOGAP)	Positive
4	Gas_14	Gas Interconnector Poland Ukraine	NPVs
5	Gas_10	Gas Interconnector Serbia Croatia	111 V 5
6	Gas_02	Interconnection Pipeline BiH HR (Licka JesenicaTrzacBosanska Krupa)	
7	Gas_01	Interconnection pipeline BiH-HR (Slobodnica-Brod-Zenica)	
8	Gas_03	Interconnection Pipeline HR-BiH (PloceMostarSarajevo / ZagvozdPosusje Travnik)	Ļ
9	Gas_07	TESLA	
10	Gas_16	Ionian Adriatic Pipeline	
10	Gas_17	EAGLE LNG and pipeline	
12	Gas_11	Gas Interconnector Serbia Macedonia	
13	Gas_05	Gas Interconnector Macedonia Albania	Negative
14	Gas_04B	Gas Interconnector Macedonia Greece	NPVs
15	Gas_08	Gas Interconnector Serbia Romania	
16	Gas_04A	Gas Interconnector Macedonia Bulgaria	
17	Gas_15	Development of HU to UA firm capacity	

Sensitivity Analysis

Sensitivity scenarios for modelling CBA

- Supply scenarios
 - Flat oil price scenario (Brent crude price set at 2016 level)
 - 10% more supply of LNG to Europe
 - 10% less supply of LNG to Europe
- Demand
 - Constrained demand in EnC contracting parties (-50%)
 - Constrained demand in EnC contracting parties (-25%)
 - 20% lower demand in Europe
 - 10% lower demand in Europe
 - 10% higher demand in Europe
 - 20% higher demand in Europe
- Infrastructure
 - HR LNG is not commissioned
- TOOT

2016 estima te Piat on price LNG supply in EnC supply in EnC CP in Enc Europe in Europe			Supr	ly con	arios			omand	sconario			Infra	
2016 estima te Flat oi price -10% LNG supply -50% in EnC CP -25% in EnC in EnC CP -10% in Enc in EnC CP -10% in Enc in	NPV M€	Rest	Supp	-									
te price LNG une c in enc			Flat oil						_	_			тоот
GAS_01 362 363 235 306 32 153 136 155 291 173 -64 -9 GAS_02 407 408 281 352 77 198 182 200 336 218 -18 -4 GAS_03 346 341 216 294 5 129 110 135 279 162 -84 -1 GAS_04A -39 -38 -39 -39 -46 -42 -44 -42 -39 -40 -39 -5 GAS_04B -51 -50 -62 -51 -77 -64 -38 -74 -55 -58 -52 -11 GAS_05 -323 -306 -229 -237 -197 -253 -141 -235 -236 -162 -328 -11 GAS_07 -2617 -2837 -2910 -2355 -3267 -3297 -3177 -2917 -2618 -2895 -2261 -38 GAS_08 -32 -42 -30 -28 -20 <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					_								
GAS_02 407 408 281 352 77 198 182 200 336 218 -18 -4 GAS_03 346 341 216 294 5 129 110 135 279 162 -84 -1 GAS_04A -39 -38 -39 -39 -46 -42 -44 -42 -39 -40 -39 -55 GAS_04B -51 -50 -62 -51 -77 -64 -38 -74 -55 -58 -52 -1 GAS_05 -323 -306 -229 -237 -197 -253 -141 -235 -236 -162 -328 -1 GAS_07 -2617 -2837 -2910 -2355 -3267 -3297 -3177 -2917 -2618 -2895 -2261 -38 GAS_08 -32 -42 -30 -28 -20 -11 -32 -30 -53 -37 -11 -33 GAS_09 596 525 379 542 4			-								-		
GAS_03 346 341 216 294 5 129 110 135 279 162 -84 -1 GAS_04A -39 -38 -39 -39 -46 -42 -44 -42 -39 -40 -39 -5 GAS_04B -51 -50 -62 -51 -77 -64 -38 -74 -55 -58 -52 -1 GAS_05 -323 -306 -229 -237 -197 -253 -141 -235 -236 -162 -328 -1 GAS_07 -2617 -2837 -2910 -2355 -3267 -3297 -3177 -2917 -2618 -2895 -2261 -38 GAS_08 -32 -42 -30 -28 -20 -11 -32 -30 -53 -37 -11 33 GAS_09 596 525 379 542 4 248 110 216 539 443 685 -60 GAS_10 428 432 264 232 -59	GAS_01	362	363	235	306	32	153	136	155	291	173	-64	-94
GAS_04A -39 -38 -39 -39 -46 -42 -44 -42 -39 -40 -39 -5 GAS_04B -51 -50 -62 -51 -77 -64 -38 -74 -55 -58 -52 -1 GAS_05 -323 -306 -229 -237 -197 -253 -141 -235 -236 -162 -328 -1 GAS_07 -2617 -2837 -2910 -2355 -3267 -3297 -3177 -2917 -2618 -2895 -2261 -38 GAS_08 -32 -42 -30 -28 -20 -11 -32 -30 -53 -37 -11 -38 GAS_08 -32 -42 -30 -28 -20 -11 -32 -30 -53 -37 -11 33 GAS_09 596 525 379 542 4 248 110 216 539 443 685 -60 GAS_10 428 432 264 232 -59 </th <th>GAS_02</th> <th>407</th> <th>408</th> <th>281</th> <th>352</th> <th>77</th> <th>198</th> <th>182</th> <th>200</th> <th>336</th> <th>218</th> <th>-18</th> <th>-49</th>	GAS_02	407	408	281	352	77	198	182	200	336	218	-18	-49
GAS_04B -51 -50 -62 -51 -77 -64 -38 -74 -55 -58 -52 -1 GAS_05 -323 -306 -229 -237 -197 -253 -141 -235 -236 -162 -328 -1 GAS_07 -2617 -2837 -2910 -2355 -3267 -3297 -3177 -2917 -2618 -2895 -2261 -38 GAS_08 -32 -42 -30 -28 -20 -11 -32 -30 -53 -37 -11 -38 GAS_09 596 525 379 542 4 248 110 216 539 443 685 -60 GAS_09 596 525 379 542 4 248 110 216 539 443 685 -60 GAS_10 428 432 264 232 -59 203 69 108 222 -15 -91 -1 GAS_11 4 -6 -22 28 -32	GAS_03	346	341	216	294	5	129	110	135	279	162	-84	-107
GAS_05 -323 -306 -229 -237 -197 -253 -141 -235 -236 -162 -328 -1 GAS_07 -2617 -2837 -2910 -2355 -3267 -3297 -3177 -2917 -2618 -2895 -2261 -38 GAS_08 -32 -42 -30 -28 -20 -11 -32 -30 -53 -37 -11 33 GAS_09 596 525 379 542 4 248 110 216 539 443 685 -6 GAS_10 428 432 264 232 -59 203 69 108 222 -15 -91 -1 GAS_11 4 -6 -22 28 -32 -12 -19 -23 12 67 61 -22 GAS_12 576 601 532 694 293 434 554 585 621 585 479 -6 GAS_13 537 556 546 695 197 <	GAS_04A	-39	-38	-39	-39	-46	-42	-44	-42	-39	-40	-39	-53
GAS_07 -2617 -2837 -2910 -2355 -3267 -3297 -3177 -2917 -2618 -2895 -2261 -38 GAS_08 -32 -42 -30 -28 -20 -11 -32 -30 -53 -37 -11 33 GAS_09 596 525 379 542 4 248 110 216 539 443 685 -6 GAS_10 428 432 264 232 -59 203 69 108 222 -15 -91 -1 GAS_11 4 -6 -22 28 -32 -12 -19 -23 12 67 61 -2 GAS_12 576 601 532 694 293 434 554 585 621 585 479 -6 GAS_13 537 556 546 695 197 364 541 517 627 690 538 -2	GAS_04B	-51	-50	-62	-51	-77	-64	-38	-74	-55	-58	-52	-106
GAS_08 -32 -42 -30 -28 -20 -11 -32 -30 -53 -37 -11 33 GAS_09 596 525 379 542 4 248 110 216 539 443 685 -6 GAS_09 596 525 379 542 4 248 110 216 539 443 685 -6 GAS_10 428 432 264 232 -59 203 69 108 222 -15 -91 -1 GAS_11 4 -6 -22 28 -32 -12 -19 -23 12 67 61 -22 GAS_12 576 601 532 694 293 434 554 585 621 585 479 -6 GAS_13 537 556 546 695 197 364 541 517 627 690 538 -2	GAS_05	-323	-306	-229	-237	-197	-253	-141	-235	-236	-162	-328	-175
GAS_09 596 525 379 542 4 248 110 216 539 443 685 -6 GAS_10 428 432 264 232 -59 203 69 108 222 -15 -91 -1 GAS_11 4 -6 -22 28 -32 -12 -19 -23 12 67 61 -2 GAS_12 576 601 532 694 293 434 554 585 621 585 479 -6 GAS_13 537 556 546 695 197 364 541 517 627 690 538 -2	GAS_07	-2617	-2837	-2910	-2355	-3267	-3297	-3177	-2917	-2618	-2895	-2261	-3846
GAS_10 428 432 264 232 -59 203 69 108 222 -15 -91 -1 GAS_11 4 -6 -22 28 -32 -12 -19 -23 12 67 61 -2 GAS_12 576 601 532 694 293 434 554 585 621 585 479 -6 GAS_13 537 556 546 695 197 364 541 517 627 690 538 -2	GAS_08	-32	-42	-30	-28	-20	-11	-32	-30	-53	-37	-11	35
GAS_11 4 -6 -22 28 -32 -12 -19 -23 12 67 61 -2 GAS_12 576 601 532 694 293 434 554 585 621 585 479 -6 GAS_13 537 556 546 695 197 364 541 517 627 690 538 -2	GAS_09	596	525	379	542	4	248	110	216	539	443	685	-68
GAS_12 576 601 532 694 293 434 554 585 621 585 479 -6 GAS_13 537 556 546 695 197 364 541 517 627 690 538 -2	GAS_10	428	432	264	232	-59	203	69	108	222	-15	-91	-122
GAS_13 537 556 546 695 197 364 541 517 627 690 538 -2	GAS_11	4	-6	-22	28	-32	-12	-19	-23	12	67	61	-22
	GAS_12	576	601	532	694	293	434	554	585	621	585	479	-68
GAS 14 454 -112 -117 608 -186 -219 -233 -111 418 315 585 -6	GAS_13	537	556	546	695	197	364	541	517	627	690	538	-278
	GAS_14	454	-112	-117	608	-186	-219	-233	-111	418	315	585	-65
GAS_15 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	GAS_15	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20
GAS_16 -562 -560 -562 -553 -582 -573 -560 -562 -557 -553 -507 -5	GAS_16	-562	-560	-562	-553	-582	-573	-560	-562	-557	-553	-507	-561
GAS_17 -295 -295 -295 -266 -295 -295 -295 -295 -295 -295 -261 100 -295 -2	GAS_17	-295	-295	-295	-266	-295	-295	-295	-295	-261	100	-295	-292

Sensitivity of CBA: Robust results

Green cells indicate positive project NPV, red cells negative project NPV

TOOT results

- Utilisation of new infrastructure is on average 10 percentage point below the PINT utilisation results
- The benefits are lower due to overbuilt infrastructure in TOOT case
- The same infrastructure is used
- TOOT justifies that negative NPV PINT projects should not be commissioned
- Second TOOT carried out with only positive PINT NPV projects
 - The projects that are good both in PINT and in TOOT are:
 - GAS_09: Serbia-Bulgaria
 - GAS_14: Poland Ukraine
- Competing projects are:
 - the three interconnectors between HR and BA GAS_01,02,03,
 - and the ones that target Kosovo*: GAS_12 and GAS_13
 - GAS_09 and GAS_10

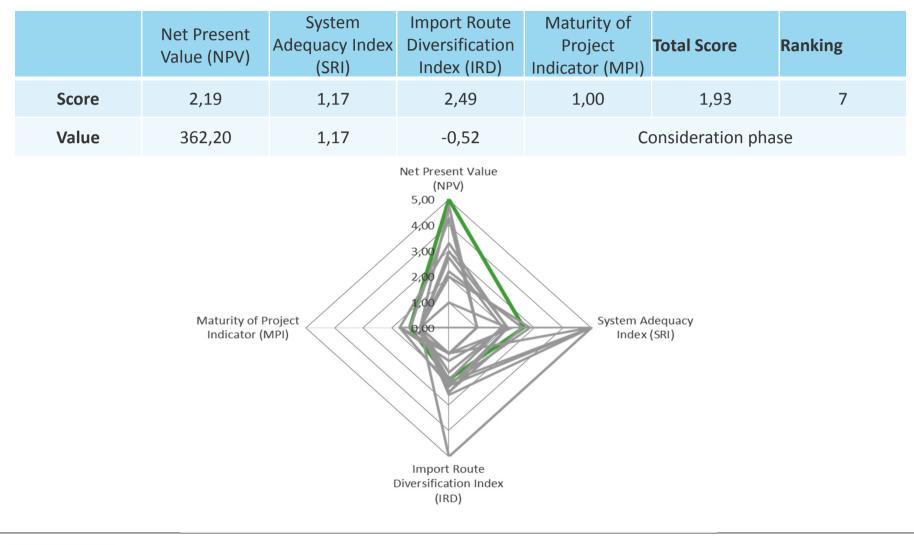
3rd Gas Group Meeting

		PINT utilisation	TOOT utilisation
GAS_01	HR-BA	40%	18%
GAS_02	BA-HR	24%	8%
GAS_03	HR-BA	23%	5%
GAS_04A	BG-MK	21%	0%
GAS_04B	GR-MK	23%	27%
GAS_05	AL-MK	24%	0%
GAS_07	GR-MK	8%	3%
GAS_07	MK-RS	6%	3%
GAS_07	RS-HU	0%	0%
GAS_07	HU-AT	0%	0%
GAS_08	RS-RO	0%	28%
GAS_08	RO-RS	8%	0%
GAS_09	RS-BG	2%	0%
GAS_09	BG-RS	91%	34%
GAS_10	HR-RS	100%	0%
GAS_11	MK-RS	27%	26%
GAS_12	RS-KO	43%	0%
GAS_13	AL-KO	24%	23%
GAS_14	PL-UA	22%	9%
GAS_15	HU-UA	0%	0%
GAS_16	AL-ME	1%	1%
GAS_16	HR-ME	0%	0%
GAS_17	AL-IT	0%	0%
GAS_17	AL LNG	0%	0%

Results and ranking – COMPETING PROJECTS marked blue

Rank	Project ID	Project Name	
1	Gas_09	Gas Interconnector Serbia Bulgaria	
2	Gas_12	Gas Interconnector Serbia Montenegro (incl. Kosovo) Section Nis (Doljevac) Pristina	
3	Gas_13	AlbaniaKosovo Gas Pipeline (ALKOGAP)	Positive
4	Gas_14	Gas Interconnector Poland Ukraine	NPVs
5	Gas_10 Gas_02	Gas Interconnector Serbia Croatia Interconnection Pipeline BiH HR (Licka JesenicaTrzacBosanska Krupa)	111 V 3
7	Gas_01	Interconnection pipeline BiH-HR (Slobodnica-Brod-Zenica)	
8	Gas_03	Interconnection Pipeline HR-BiH (PloceMostarSarajevo / ZagvozdPosusje Travnik)	Ļ
9	Gas_07	TESLA	
10	Gas_16	Ionian Adriatic Pipeline	
10	Gas_17	EAGLE LNG and pipeline	
12	Gas_11	Gas Interconnector Serbia Macedonia	
13	Gas_05	Gas Interconnector Macedonia Albania	Negative
14	Gas_04B	Gas Interconnector Macedonia Greece	NPVs
15	Gas_08	Gas Interconnector Serbia Romania	
16	Gas_04A	Gas Interconnector Macedonia Bulgaria	
17	Gas_15	Development of HU to UA firm capacity	

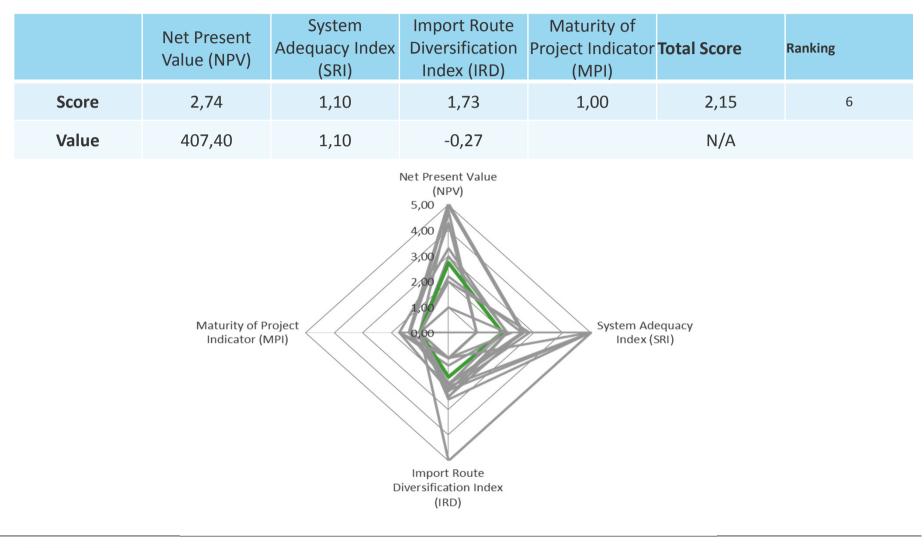
Assessment Results for Individual Projects


GAS_01: Interconnector BiH-HR (Slobodnica-Brod-Zenica)

		Welfar	e char	ige, M€	5		Inv.						city,	
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€	code	A	Country B	<u> </u>	h/d B→A	Date
AL	1	0	0	0	0	0	XXX	0				A→D	D→A	
BA	481	0	-86	-35	360	39	XXX	314	GAS					
BG	-4	0	3	-1	-2	0	XXX	-2	01	BA	HR	35	44	2023
GR	-5	0	3	2	-1	0	XXX	-1						
HR	-6	1	1	269	266	0	XXX	257			G	AS_01		
HU	87	-3	-58	-101	-75	2			0,	0_01				
IT	88	-8	-63	2	19	2	XXX	20						
KO*	0	0	0	0	0	0	XXX	0						
ME	0	0	0	0	0	0	XXX	0			CO2			-
МК	-1	0	0	0	-1	0	XXX	-1			SOS			- i- i
MD	3	0	0	0	3	0	XXX	3						
PL	6	-1	-3	-1	0	0	XXX	0	tal					
RO	40	-24	-1	3	18	1	XXX	19	to			i	NPV	
RS	25	-2	-13	-173	-163	2	XXX	-161	real tota			I I		
SK	12	0	-16	-34	-39	0	XXX	-38	9				362	
UA	116	-81	-21	7	22	3	XXX	25	2016	N	larket			-
Region	844	-119	-255	-62	408	49	XXX	362	Ű,		gration			
Sensitivity for NPV GAS_01	Best est. Fla	t oil -10% LNG		-50% -2! in EnC in E CP C		in	+10% +20 in in uropeEuro	OUT	M€,				Investmei cost	nt
Utiliza	ation	fror	n HR	to B	A 40º		B	enefit		Cost				

3rd Gas Group Meeting

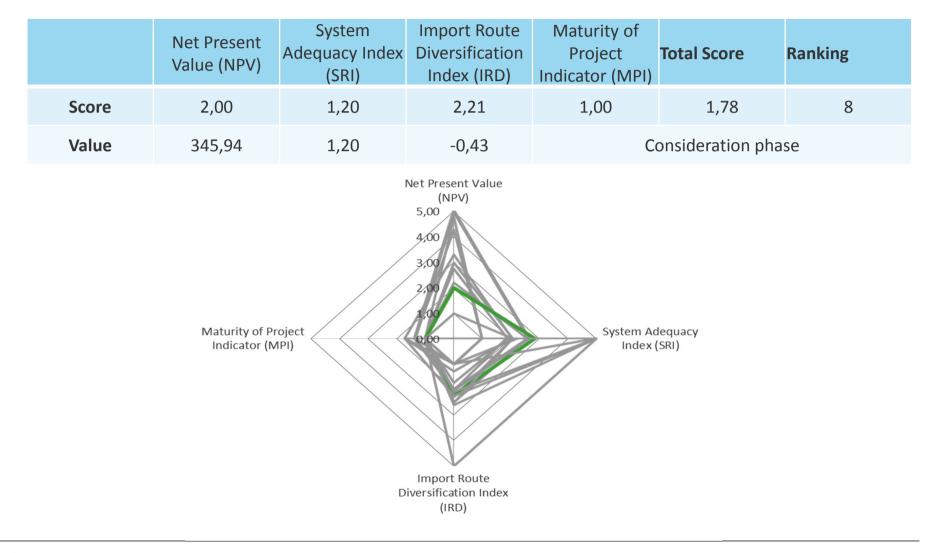
GAS_01: Interconnector BiH-HR (Slobodnica-Brod-Zenica)


GAS_02: Interconnector BiH HR (Licka JesenicaTrzacBosanska Krupa)

		Welfar	e char	ige, M€	2		Inv.		Droject	Countra	Countra		acity,	
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€	code	A	Country B	<u> </u>	h/d B→A	Date
AL	1	0	0	0	0	0	XXX	0				A→D		
BA	481	0	-86	-35	360	39	XXX	366				0	70	2022
BG	-4	0	3	-1	-2	0	XXX	-2	GAS 02	BA	HR	0	73	2023
GR	-5	0	3	2	-1	0	XXX	-1						
HR	-6	1	1	269	266	0	XXX	250			G	AS_02		
HU	87	-3	-58	-101	-75	2	XXX	-73			0,	10_02		
IT	88	-8	-63	2	19	2	XXX	20						
KO*	0	0	0	0	0	0	XXX	0						
ME	0	0	0	0	0	0	XXX	0			CO2			i
MK	-1	0	0	0	-1	0	XXX	-1			SOS			
MD	3	0	0	0	3	0	XXX	3						
PL	6	-1	-3	-1	0	0	XXX	0	tal					
RO	40	-24	-1	3	18	1	XXX	19	l tc					
RS	25	-2	-13	-173	-163	2	XXX	-161	real total				NPV	
SK	12	0	-16	-34	-39	0	XXX	-38	.6 1				407	
UA	116	-81	-21	7	22	3	XXX	25	2016	N	larket	i i	-107	i
Region	844	-119	-255	-62	408	49	XXX	407		inte	gration			
									M€,			i		
Sensitivity for NPV	Best est.	t oil -10% LNG		-50% -2! in EnC in E CP C		in	+10% +20 in in uropeEuro			_				
GAS_02												Ľ.	Investmer cost	it
Utiliza	ation	: fror	n HR	to B	A 249		В	enefit		Cost				

3rd Gas Group Meeting

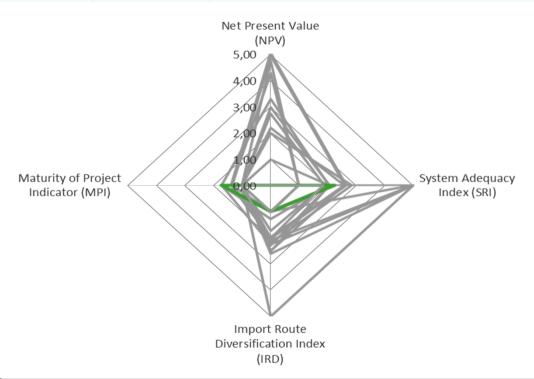
GAS_02: Interconnector BiH HR (Licka JesenicaTrzacBosanska Krupa)


GAS_03: Interconnector BiH HR (PloceMostarSarajevo / Zagvozd Posusje Travnik)

		Welfar	e char	ige, M€	2		Inv.		Dreiget	Countra	Country	Сара		
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€	code	A	B	GW A→B	n∕a B→A	Date
AL	1	0	0	0	1	0	XXX	0				A→D		
BA	490	0	-94	-34	363	39	XXX	302		D 4		20	70	2024
BG	-4	0	3	-1	-2	0	XXX	-2	GAS 03	BA	HR	38	73	2021
GR	-5	0	2	2	-1	0	XXX	-1						
HR	-6	1	1	275	272	0	XXX	256			G/	AS_03		
HU	89	-4	-59	-104	-78	2			•					
IT	93	-9	-67	5	23	2	XXX	24						
КО*	0	0	0	0	0	0	XXX	0			co2	- ï –		j
ME	0	0	0	0	0	0	XXX	0			CO2			
MK	-1	0	0	0	0	0	XXX	-1			SOS			
MD	3	0	0	0	3	0	XXX	3	_			i		
PL	7	-2	-4	-1	0	0	XXX	0	ota					
RO	39	-23	-1	3	17	1	XXX	18	tt			i	NPV	
RS	25	-2	-13	-175	-165	2	XXX	-163	real total				346	i i
SK	12	0	-16	-36	-40	0	XXX	-39	16					
UA	116	-81	-20	7	22	3	XXX	25	2016	N	larket			
Region	861	-120	-268	-59	414	48	XXX	346	M€,	inte	gration			
Sensitivity for NPV	Best est.	at oil -10% LNG	ʻ₀ +10% _i	-50% -2! in EnC in E CP C		in	+10% +20 in in uropeEuro	OUT	Σ					
GAS_03													Investmen cost	
Utiliza	ation	: fror	n HR	to B	A 239	%				В	enefit		Cost	

3rd Gas Group Meeting

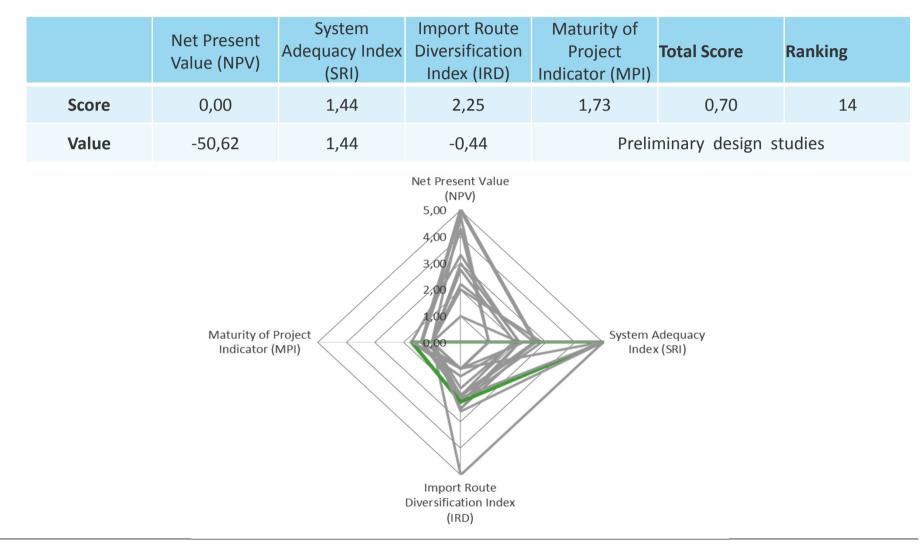
GAS_03: Interconnector BiH HR (PloceMostarSarajevo / Zagvozd Posusje Travnik)


	<u> </u>	Welfar	e chan	ge, M€	5		Inv.		Ducient	.	C		city,	
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€	code	A	Country B	GW A→B	h/d B→A	Date
AL	0	0	0	0	0	0	XXX	0				A→D		
BA	0	0	0	0	0	0	XXX	0	GAS			60		2020
BG	-1	0	1	9	9	0	XXX	-31	04a	BG	MK	63	0	2020
GR	0	0	0	6	6	0	XXX	6						
HR	0	0	0	0	0	0	XXX	0			GA	S_04A		
HU	0	0	0	0	0			0,						
IT	-2	0	1	0	0	0	XXX	0						
КО*	0	0	0	0	0	0	XXX	0				_		
ME	0	0	0	0	0	0	XXX	0				i		_
MK	56	0	-11	-48	-3	4	XXX	-12		-		: I		
MD	0	0	0	0	0	0	XXX	0	_					
PL	0	0	0	0	0	0	XXX	0	ota					
RO	0	0	0	0	0	0	XXX	0	to		NPV			
RS	0	0	0	0	0	0	XXX	0	Lea		-39			
SK	0	0	0	0	0	0	XXX	0	[0]		00		Investmer	nt
UA	-1	0	0	0	0	0	XXX	0	2016 real tota				cost	
Region	51	1	-8	-33	11	3	XXX	-39	M€, J			i –		
Sensitivity for NPV GAS_04a	Best est. Fla	t oil -10% LNG	o +10% ;	-50% -2! in EnC CP C	nC in	in	+10% +20 in in urope Euro		Ä		coz larket egratio n			
Utiliza	ation	: fron	n BG	to M	K 21		В	enefit		Cost				

GAS_04a: Interconnector Macedonia - Bulgaria

GAS_04a: Interconnector Macedonia - Bulgaria

	Net Present Value (NPV)	System Adequacy Index (SRI)	Import Route Diversification Index (IRD)	Maturity of Project Indicator (MPI)	Total Score	Ranking
Score	0,00	1,14	1,00	1,73	0,50	16
Value	-38,70	1,14	-0,03	Prelir	minary design st	tudies

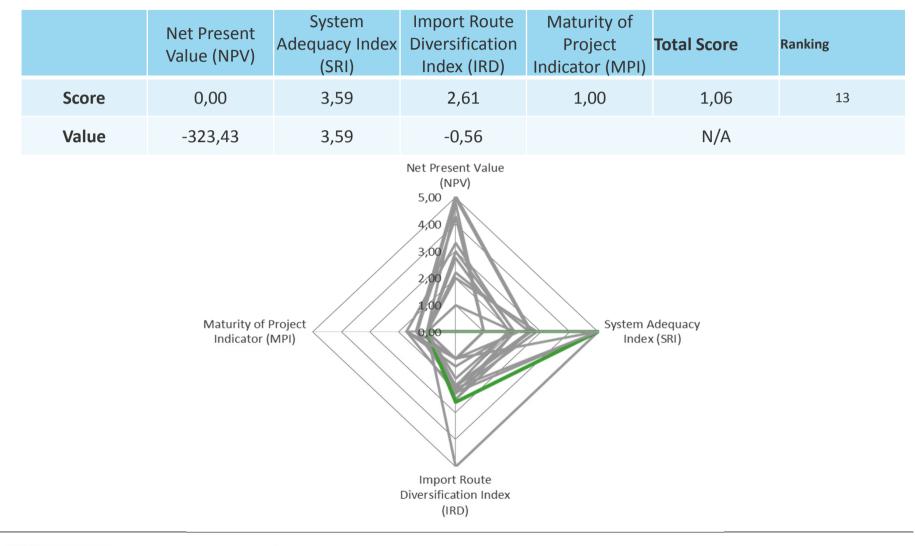


		Welfar	e chan	ge, M€			Inv.		Droject	Country	Country		acity,	
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€	code	Country A	B	GW A→B	h/d B→A	Date
AL	0	0	0	0	-1	0	XXX	-1				A-/D	D-⁄A	
BA	0	0	0	0	0	0	XXX	0	GAS		MIZ	62	0	2020
BG	17	0	-18	-87	-88	1	XXX	-87	04b	GR	MK	63	0	2020
GR	-3	0	1	18	15	0	XXX	-34						
HR	0	0	0	1	0	0	XXX	0			GA	AS 04B		
HU	0	0	0	0	0									
IT	4	0	-3	2	2	0	XXX	3						
KO*	0	0	0	0	0	0	XXX	0						
ME	0	0	0	0	0	0	XXX	0				<u> </u>		_
MK	194	0	-37	-44	113	12	XXX	68		-				
MD	0	0	0	0	0	0	XXX	0	_		NPV	i –		
PL	0	0	0	0	0	0	XXX	0	ota	<u>i</u>	-51	<u>i</u> –		
RO	1	-1	0	1	1	0	XXX	1	l to	1	-91			
RS	0	0	0	0	0	0	XXX	0	rea					
SK	0	0	0	0	0	0	XXX	0	191				Investmer	nt
UA	3	-2	-1	0	0	0	XXX	0	2016 real total		CO2		cost	
Region	216	-3	-59	-111	43	13	XXX	-51	M€, J		SOS			
Sensitivity for NPV GAS_04b	Best est. Fla	t oil -10% LNG	′o +10% ;	-50% -2! in EnC CP C	nC in	in	+10% +20 in in uropeEuro	OUT	Ä	N	Narket egration			
Utiliza	ation	: fror	n GR	to M	K 23	%				В	enefit		Cost	

GAS_04b: Interconnector Macedonia - Greece

3rd Gas Group Meeting

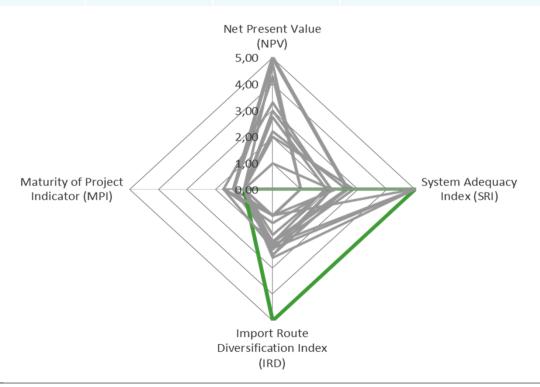
GAS_04b: Interconnector Macedonia - Greece



		Welfar	e char	ige, M€	2		Inv.		Drojost	Country	Country		acity,	
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€	code	A	B	<u> </u>	h/d B→A	Date
AL	-4	0	0	69	66	0	XXX	-74				A-/U	D-/A	
BA	0	0	0	0	0	0	XXX	0		NALZ	A 1	ГС	ГС	2020
BG	18	0	-18	-87	-87	1	XXX	-86	GAS 05	MK	AL	56	56	2020
GR	-1	0	0	-91	-92	0	XXX	-92						
HR	0	0	1	-1	1	0	XXX	1			GA	AS_05		
HU	-7	1	5	-2	-3	0	XXX	-4						
IT	-345	32	251	21	-40	-6	XXX	-47					CO2	
KO *	0	0	0	0	0	0	XXX	0		[SOS	
ME	0	0	0	0	0	0	XXX	0						
MK	88	0	-16	-47	24	5	XXX	-5						
MD	-1	0	0	0	-1	0	XXX	-1	_				Market	
PL	-12	3	7	0	-2	0	XXX	-2	otal				integratio	n
RO	-10	7	0	1	-2	0	XXX	-2	l to					
RS	-2	0	1	0	-1	0	XXX	-1	rea	i				
SK	-7	0	6	-1	-1	0	XXX	-2	16	1	NPV			
UA	-44	30	6	1	-7	-1	XXX	-8	20.	- i - ·	-323			
Region	-326	73	243	-136	-146	-2	XXX	-323	M€, 2016 real total					
Sensitivity for NPV	Best est. Fla	t oil -10% LNG		-50% -2! in EnC in E CP C		in	+10% +20 in in uropeEuro		2				Investmen cost	t
GAS_05														
Utiliza	ation	: fror	n AL	to M	K 249	%				∟ _ B	enefit		Cost	_
E R	EKK		DI	۱V·GL		3rd Ga	is Group I	Meeting	30	June 2016				57

GAS_05: Interconnector Macedonia - Albania

GAS_05: Interconnector Macedonia - Albania



	Welfare change, M€			CO ₂ ,	Inv. cost,	NPV,	Project	Country	Country	Capa GW		_		
	Cons.	Prod.	Trad.	Infra	Total	CO ₂ , M€	M€	M€	code	A	В	A→B	B→A	Date
AL	0	0	0	-1	-1	0	XXX	-1					_	
BA	24	0	-10	39	53	1	XXX	54		GR	MK	675	675	2020
BG	3	0	-7	-98	-101	0	XXX	-101	GAS 07	MK	RS	640	640	2020
GR	-21	0	8	470	457	-1	XXX	-544	GAS U/	RS	HU	582	582	2020
HR	-6	2	0	-76	-80	0	XXX	-80		HU	AT	524	524	2020
HU	1027	-57	-639	-275	56	19	XXX	-610		110	731	521	521	2020
IT	77	-7	-58	-35	-23	3	XXX	-20			GA	AS_07		
КО*	0	0	0	0	0	0	XXX	0				_		
ME	0	0	0	0	0	0	XXX	0						
MK	192	0	-37	213	368	12	XXX	-36						
MD	38	0	-2	3	39	-2	XXX	37	_					
PL	-2	-1	7	-30	-26	0	XXX	-26	2016 real total	-				
RO	340	-218	-13	15	124	9	XXX	132	to					
RS	730	-72	-349	38	348	45	XXX	-852	rea	i	NPV			
SK	-19	0	58	-648	-609	0	XXX	-609	191	-	2617			
UA	1355	-912	-225	-211	7	32	XXX	39	201				Investmer	nt
Region	3738	-1264	-1266	-598	610	117	XXX	-2617	M€, S				cost	
Sensitivity for NPV	Best est. Fla	t oil -10% LNG	0 +10% ;		5% -20% inC in P Europe	in	+10% +20 in in uropeEuro	OUT	2		CO2 SOS			
GAS_07											larket			
Utiliza	ation	: fror	n GR	to M	K: 8	%,				inte	gration			
from	MK t	o RS	6%			-				В	enefit		Cost	-
E R	EKK		DN	1V·GL		3rd Ga	is Group I	Meeting	30	June 2016				59

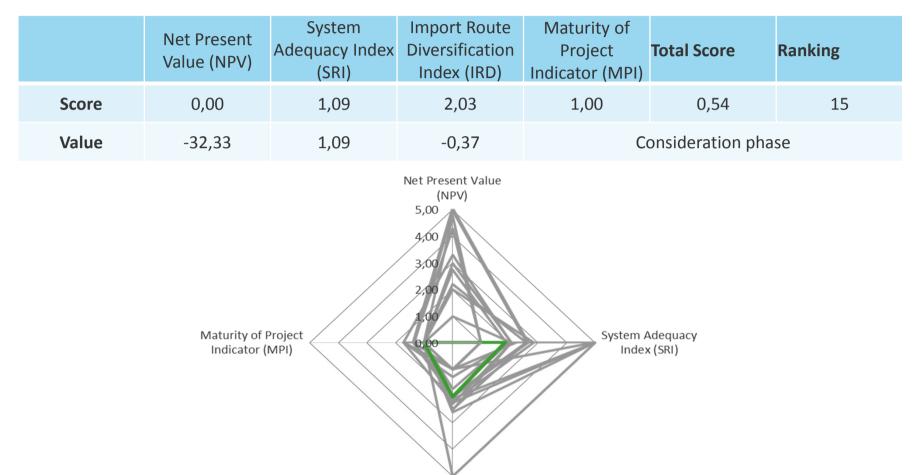
GAS_07: Macedonian part of TESLA project

GAS_07: Macedonian part of **TESLA** project

Net Present Value (NPV)	System Adequacy Index (SRI)	Import Route Diversification Index (IRD)	Maturity of Project Indicator (MPI)		Ranking
0,00	5,00	5,00	1,00	1,60	9
-2617,23	5,00	-1,34		N/A	

3rd Gas Group Meeting

		Welfar	e chan	ge, M€	5		Inv.		Droject	Countra	Countra	-	acity,	
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€	code	A	Country B	<u> </u>	′h/d B→A	Date
AL	0	0	0	0	0	0	XXX	0				A→D	B→A	
BA	1	0	-1	0	1	0	XXX	1				25	25	2020
BG	0	0	0	4	4	0	XXX	4	GAS 08	RS	RO	35	35	2020
GR	0	0	0	4	4	0	XXX	4						
HR	0	0	0	0	0	0	XXX	0			GA	AS_08		
HU	22	-2	-14	-35	-29	0	XXX	-28				_		
IT	49	-5	-34	-1	9	1	XXX	9				-	CO2	
KO *	0	0	0	0	0	0	XXX	0					02	
ME	0	0	0	0	0	0	XXX	0						
MK	0	0	0	0	0	0	XXX	0						
MD	0	0	0	0	0	0	XXX	0						_
PL	5	-1	-3	1	1	0	XXX	1	ota					
RO	-139	132	6	-3	-3	-2	XXX	-35	to					
RS	13	-2	-7	-5	-1	1	XXX	-3	rea		NPV			
SK	2	0	-1	-6	-5	0	XXX	-5	16		-32		Investmer	nt
UA	-15	10	4	22	20	0	XXX	20	20		-52		cost	
Region	-61	131	-51	-19	1	-1	XXX	-32	M€, 2016 real total					
Sensitivity for NPV GAS_08	Best est.	t oil -10% LNG	% +10% ;	-50% -2 in EnC CP C		in	+10% +20 in in uropeEuro		2		1arket egration			
Utiliza	ation	: fror	n RO	to R	S 8%	D				/	sos		Cost	


GAS_08: Interconnector Serbia-Romania

3rd Gas Group Meeting

30 June 2016

61

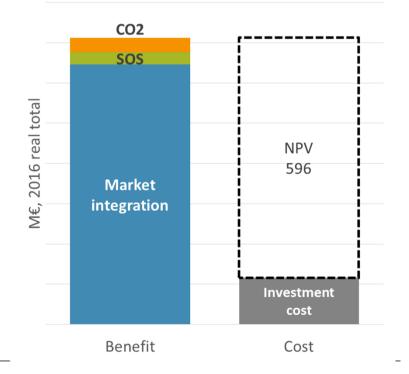
GAS_08: Interconnector Serbia-Romania

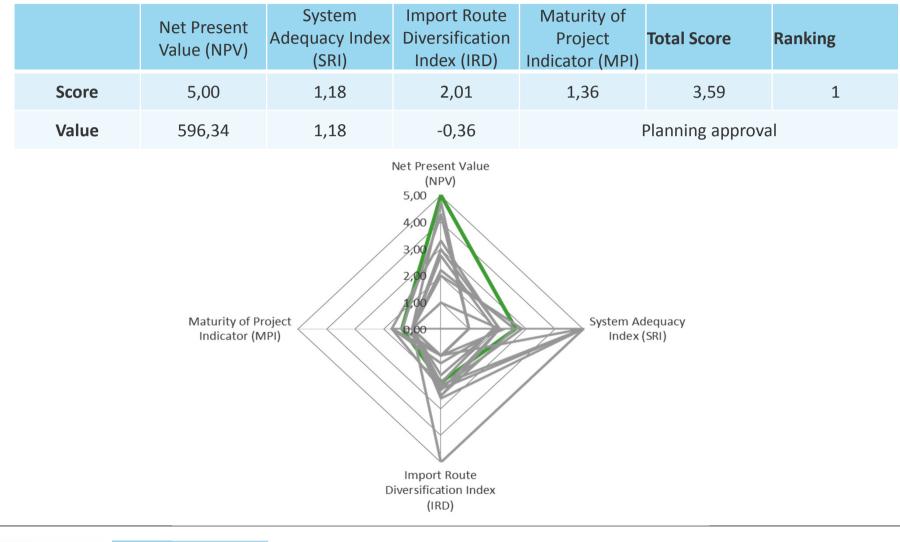
Import Route Diversification Index (IRD)

	\	Welfar	e chan	ge, M€	2		Inv.	
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV M€
AL	1	0	0	0	1	0	XXX	1
BA	18	0	-8	11	20	1	XXX	21
BG	68	-2	-72	364	358	1	XXX	313
GR	-9	0	5	432	428	0	XXX	428
HR	-4	1	-1	-45	-48	0	XXX	-48
HU	218	-11	-143	-359	-294	4	XXX	-290
IT	263	-24	-189	-3	47	4	XXX	51
KO*	0	0	0	0	0	0	XXX	0
ME	0	0	0	0	0	0	XXX	0
МК	7	0	-4	1	4	0	XXX	5
MD	7	0	0	1	7	0	XXX	7
PL	35	-9	-20	-1	4	1	XXX	5
RO	93	-57	-3	4	36	2	XXX	39
RS	273	-34	-147	102	193	14	XXX	138
SK	33	0	-41	-125	-132	1	XXX	-131
UA	229	-164	-38	24	52	7	XXX	59
Region	1232	-300	-662	407	676	36	XXX	596

GAS_09: Gas Interconnector Serbia Bulgaria

Utilization: from BG to RS 91%,


from RS to BG:2%

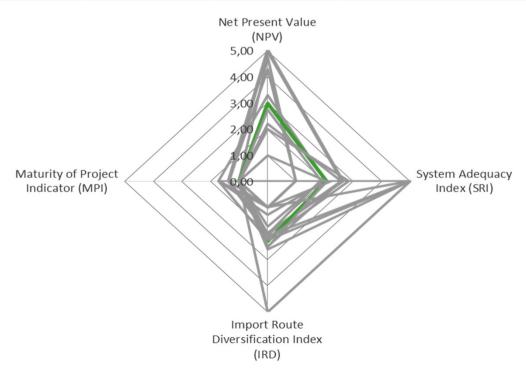

3rd Gas Group Meeting

	Project code	Country A	Country B		h/d	Date
1				A→B	B→A	
	GAS 09	BG	RS	39	39	2019

GAS_09

GAS_09: Gas Interconnector Serbia Bulgaria

		Welfar	e char	nge, M€	2		Inv.						city,	
						CO ₂ ,	cost,	NPV,	code	Country	Country B	GW	h/d	Date
				Infra		M€	M€	M€	coue	A	D	A→B	B→A	
AL	1	0	0	0	1	0	XXX	1						
BA	6	0	-3	6	9	0	XXX	9	GAS 10	HR	RS	33	33	2023
BG	-5	0	4	-3	-4	0	XXX	-4	0/10/10			55	55	2025
GR	-7	0	4	3	0	0	XXX	0						
HR	-22	5	-9	632	606	0	XXX	517			GA	AS_10		
HU	197	-8	-134	-301	-247	4	XXX	-243				-		
IT	198	-18	-142	20	57	4	XXX	61			CO2			
KO*	0	0	0	0	0	0	XXX	0			02	· · ·		<u>i</u>
ME	0	0	0	0	0	0	XXX	0			SOS	i		
MK	-1	0	0	0	-1	0	XXX	-1						
MD	8	0	0	1	8	0	XXX	8						
PL	27	-7	-16	-4	0	1	XXX	1	tal	_				
RO	95	-58	-4	6	39	2	XXX	42	to				NPV	Ì
RS	98	-11	-53	78	112	6	XXX	86	real total				428	i
SK	31	0	-40	-105	-113	1	XXX	-113	0 1				420	
UA	279	-195	-47	19	56	8	XXX	63	2016		larket			i
Region	905	-293	-440	352	524	25	XXX	428	M€, 1	inte	gration			
Sensitivity for NPV GAS_10	Best est. Fla	t oil -10% LNG		-50% -2! in EnC in E CP C		in	+10% +20 in in urope Euro		N				Investmen cost	ıt
Utilization: from HR to RS 100%										B	enefit		Cost	


GAS_10: Gas Interconnector Serbia Croatia

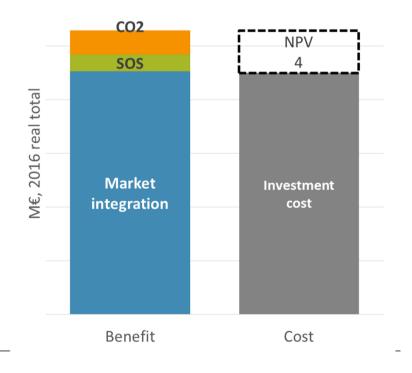
3rd Gas Group Meeting

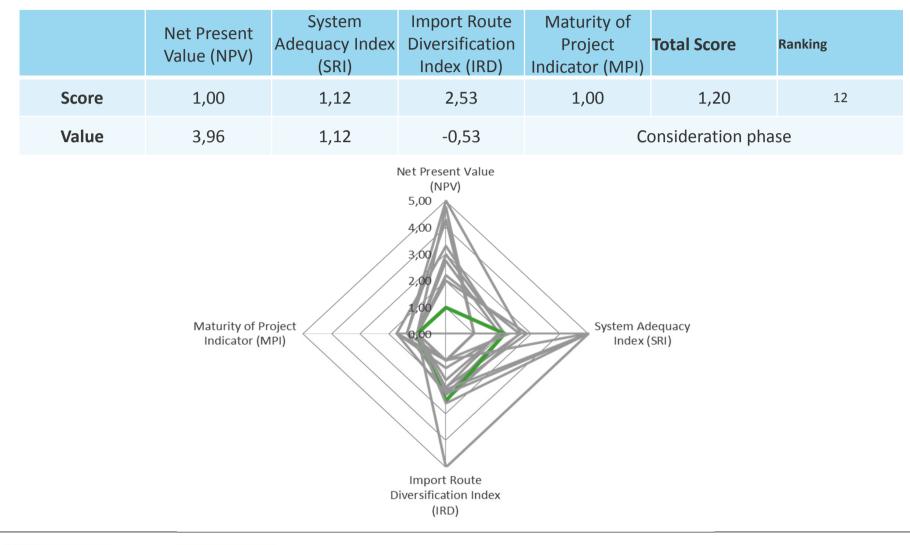
GAS_10: Gas Interconnector Serbia Croatia

	Net Present Value (NPV)	System Adequacy Index (SRI)	Import Route Diversification Index (IRD)	Maturity of Project Indicator (MPI)	Total Score	Ranking
Score	2,98	1,12	2,29	1,00	2,36	5
Value	427,77	1,12	-0,45	C	onsideration pha	se

		Welfa	re chai	nge, I	٩€			In	v .	
	Cons	. Prod	. Trad.	Infr	a To	tal	CO₂, M€	cos M	-	NPV, M€
AL	0	0	0	0		0	0	XX	x	0
BA	0	0	-1	1		0	0	XX	x	0
BG	-1	0	1	19	1	9	0	XX	x	19
GR	0	0	0	25	2	25	0	XX	x	25
HR	0	0	0	-21	-2	21	0	XX	(X	-21
HU	42	-1	-26	-32	-1	17	1	XX	x	-16
IT	18	-2	-13	-4	-	1	0	XX	X	0
KO*	0	0	0	0		0	0	XX	x	0
ME	0	0	0	0		0	0	XX	x	0
MK	-4	0	1	30	2	27	0	XX	x	12
MD	0	0	0	0		0	0	XX	X	0
PL	2	0	-1	0		0	0	XX	x	0
RO	4	-3	0	0		2	0	XX	x	2
RS	10	-1	-6	-5	-	1	1	XX	x	-9
SK	1	0	-1	-11	-1	11	0	XX	x	-11
UA	14	-10	-2	0		2	0	XX	X	2
Region	88	-17	-49	2	2	24	2	XX	X	4
Sensitivity for NPV	Best est. F	lat oil -10	0% +10% IG LNG	-50% in EnC i CP	n EnC	-20% in urope	-10% in Europe	+10% in Europe	+20% in Europ	OUT
GAS_11										

GAS_11: Gas Interconnector Serbia Macedonia




3rd Gas Group Meeting

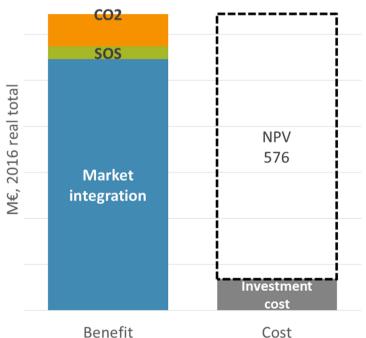
	Country	Country	Capa GW		Date
code	A	В	A→B	B→A	Date
GAS 11	RS	МК	10	10	2021

GAS_11

GAS_11: Gas Interconnector Serbia Macedonia

GAS_12: Gas Interconnector Serbia Montenegro (incl. Kosovo) Section Nis (Doljevac) Pristina

		Welf	are	char	nge, l	M€			In				
	Cons	. Prod	d. 1	۲rad.	Infr	a T	otal	CO₂, M€	CO: M		NPV, M€	Project code	Cou /
AL	0	0		0	0		0	0	XX	X	0		
BA	-1	0		0	-2		-3	0	XX	X	-3	CAS 12	П
BG	-2	0		1	0		0	0	XX	X	0	GAS 12	R
GR	-2	0		1	0		-1	0	XX	X	-1		
HR	-1	0		0	45		44	0	XX	X	44		
HU	-96	4		61	95		63	-2	XX	X	61		
IT	-48	4		34	7		-2	-1	XX	X	-3		
KO*	403	0		0	30	4	433	79	XX	X	493		
ME	0	0		0	0		0	0	XX	X	0		
MK	0	0		0	0		0	0	XX	X	0		
MD	-2	0		0	0		-2	0	XX	X	-2		_
PL	-10	3		6	0		-1	0	XX	X	-2	tal	
RO	-19	13		1	-6		-11	0	XX	X	-12	tc	
RS	-29	3		13	62		48	-2	XX	X	-4	ea.	
SK	-12	0		17	23		29	0	XX	X	28	.6 г	
UA	-55	37		11	-14	ŀ	-22	-1	XX	X	-23	2016 real tota	_
Region	124	63		146	241	L	574	71	XX	X	576	M€,]	
Sensitivity for NPV	Best est.		0% NG	+10% LNG	-50% in EnC CP	-25% in EnC CP	in	-10% in Europe	in	in		2	
GAS_12													

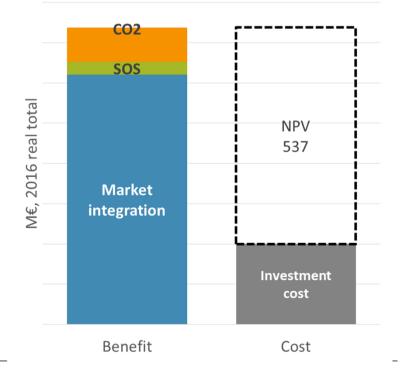

Utilization: from RS to KO* 43 %


3rd Gas Group Meeting

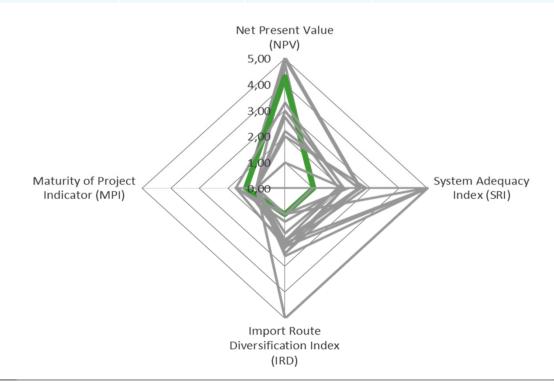
	Country	Country	Capa GW		Date
code	A	В	A→B	B→A	Date
GAS 12	RS	KO*	25	25	2023

GAS_12

GAS_12: Gas Interconnector Serbia Montenegro (incl. Kosovo) Section Nis (Doljevac) Pristina


		Welfar	e char	nge, M	Ç		Inv.	
	Cons.	Prod.	Trad.	Infra	Total	CO ₂ , M€	cost, M€	NPV, M€
AL	-4	0	0	51	47	0	XXX	-153
BA	0 0		0	0	0	0	XXX	0
BG	-2	0	2	-1	-1	0	XXX	-1
GR	-4	0	1	39	37	0	XXX	36
HR	-1	0	0	1	0	0	XXX	0
ΗU	-6	1	4	-2	-3	0	XXX	-3
IT	-345	32	251	21	-40	-7	XXX	-47
KO*	591	0	0	37	628	95	XXX	723
ME	0	0	0	0	0	0	XXX	0
МК	0	0 0 0		0	0	0	XXX	0
MD	-1	0 0		0	-1	0	XXX	-1
PL	-14	3	8	0	-2	2 -1 XXX		-3
RO	-10	6	0	0	-3	0	XXX	-3
RS	-2	0	1	-1	-1	0	XXX	-1
SK	-7	0	6	-2	-3	0	XXX	-3
UA	-32	22	5	0	-5	-1	XXX	-6
Region	165	65	279	143	652	85	XXX	537
Sensitivity for NPV	Best est. Fla	at oil -10% LNG		in EnC in		in	+10% +20 in in EuropeEuro	OUT
GAS_13								2.10

Utilization: from AL to KO* 24%

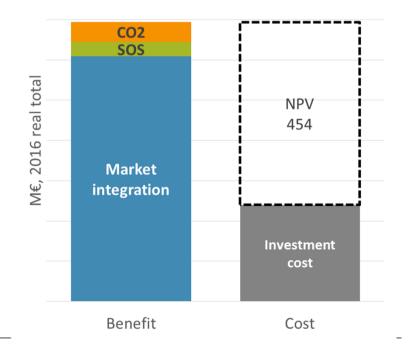

	Country	Country	Capa GW		Date		
code	A	В	A→B	B→A	Date 2022		
GAS 13	AL	KO*	53	53	2022		

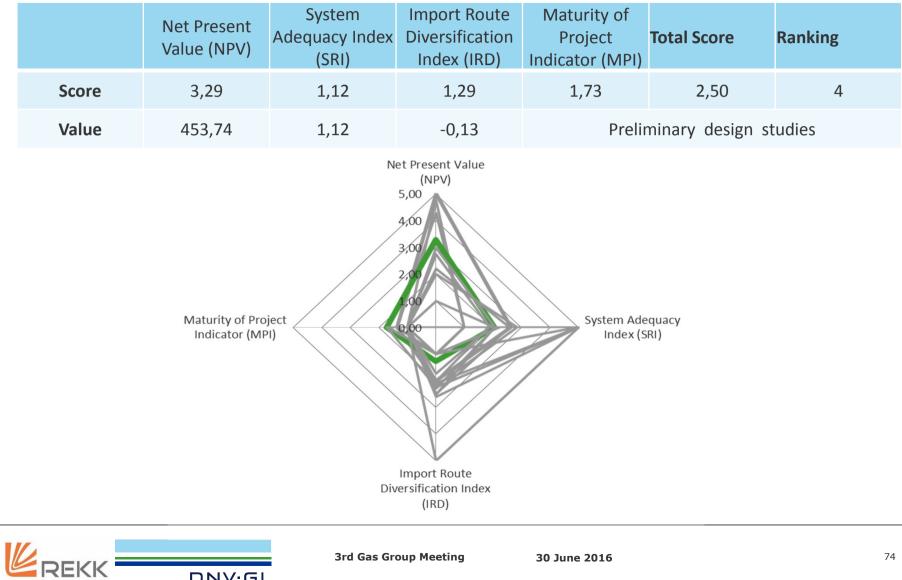
GAS_13

GAS_13: Albania Kosovo Gas Pipeline (ALKOGAP)

	Net Present Value (NPV)	System Adequacy Index (SRI)	Import Route Diversification Index (IRD)	Maturity of Project Indicator (MPI)	Total Score	Ranking
Score	4,29	1,00	1,00	1,36	3,01	3
Value	537,41	1,00	0,00		Planning approva	al

		Welfar	e char	nge, Me			Inv.	
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€
AL	4	0	0	0	4	0	XXX	4
BA	4	0	-1	2	4	0	XXX	4
BG	1	0	-1	-7	-7	0	XXX	-7
GR	1	0	-1	-3	-3	0	XXX	-3
HR	1	0	0	-8	-7	0	XXX	-7
HU	114	-13	-92	-137	-127	2	XXX	-126
IT	495	-46	-355	-27	67	9	XXX	75
KO*	0	0	0	0	0	0	XXX	0
ME	0	0	0	0	0	0	XXX	0
MK	0	0	0	0	0	0	XXX	0
MD	40	0	-2	3	40	-2	XXX	39
PL	-89	32	77	406	406 427		XXX	183
RO	320	-208	-12	2	102	8	XXX	110
RS	43	-6	-22	14	29	2	XXX	31
SK	31	0	-28	-250	-248	1	XXX	-247
UA	1417	-948	-230	125	365	32	XXX	397
Region	2382	-1189	-667	119	645	49	XXX	454
Sensitivity for NPV	Best est. Fla	nt oil -10% LNG	6 +10% LNG	in EnC in I		in	+10% +20 in in uropeEuro	OUT
GAS_14								


GAS_14: Gas Interconnection Poland Ukraine


3rd Gas Group Meeting

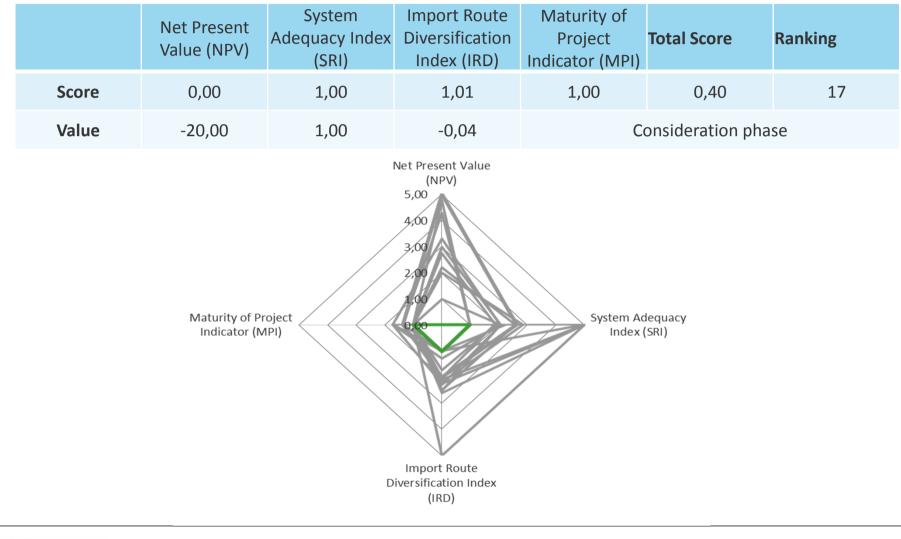
	Country	Country	Capa GW		Date
code	A	В	A→B	B→A	Dute
GAS 14	PL	UA	245	215	2020

GAS_14

GAS_14: Gas Interconnection Poland Ukraine

3rd Gas Group Meeting

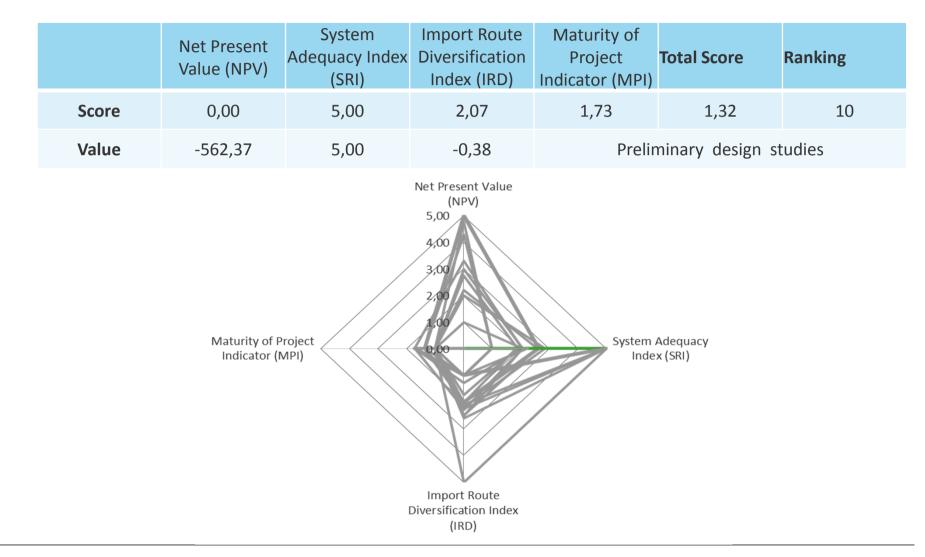
DNVGL


30 June 2016

	١	Welfar	lfare change, M€				Inv.								Duciest	C	Countra	Сара		
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€	code	A	Country B	GW A→B	h/d B→A	Date						
AL	0	0	0	0	0	0	XXX	0				A→D	D→A							
BA	0	0	0	0	0	0	XXX	0	646 4 5			170	0	2010						
BG	0	0	0	0	0	0	XXX	0	GAS 15	HU	UA	178	0	2016						
GR	0	0	0	0	0	0	XXX	0												
HR	0	0	0	0	0	0	XXX	0			GA	\S_15								
HU	0	0	0	0	0	0	XXX	-20												
IT	0	0	0	0	0	0	XXX	0												
KO*	0	0	0	0	0	0	XXX	0												
ME	0	0	0	0	0	0	XXX	0												
MK	0	0	0	0	0	0	XXX	0		<u></u>										
MD	0	0	0	0	0	0	XXX	0	_	-										
PL	0	0	0	0	0	0	XXX	0	2016 real total											
RO	0	0	0	0	0	0	XXX	0	Ito											
RS	0	0	0	0	0	0	XXX	0	rea	i										
SK	0	0	0	0	0	0	XXX	0	16											
UA	0	0	0	0	0	0	XXX	0	201	Q NPV			Investment							
Region	0	0	0	0	0	0	XXX	-20	M€,		-20		cost							
Sensitivity for NPV GAS_15	est.	t oil -10% LNG	LNG	in EnC in E CP C	P Europe	in EuropeE	+10% +20 in in uropeEuro		Z		CO2 SOS Iarket									
Jtiliza	ation	: fror	n HU	to U	A 0%	D					egration		Cost							

GAS_15: Development of the HU to UA firm capacity

GAS_15: Development of the HU to UA firm capacity



3rd Gas Group Meeting

		Welfare change, M€					Inv.		Project	Country	Country		acity,		
	Cons.	Prod.	Trad.	Infra	Total	CO₂, M€	cost, M€	NPV, M€	code	A	B	<u> </u>	/h/d B→A	Date	
AL	0	0	0	3	3	0	XXX	-193		ME	HR	150	150	2021	
BA	0	0	0	0	0	0	XXX	0	GAS 16						
BG	0	0	0	0	0	0	XXX	0		AL	ME	150	150	2021	
GR	0	0	0	3	2	0	XXX	2							
HR	0	0	0	0	0	0	XXX	-297			GA	AS_16			
HU	-1	0	0	0	0	0	XXX	0				-			
IT	-17	2	13	0	-3	0	XXX	-3							
KO*	0	0	0	0	0	0	XXX	0							
ME	40	0	0	2	42	1	XXX	-70		[
MK	0	0	0	0	0	0	XXX	0							
MD	0	0	0	0	0	0	XXX	0	_						
PL	-1	0	1	0	0	0	XXX	0	2016 real total						
RO	-2	1	0	0	-1	0	XXX	-1	al t						
RS	0	0	0	0	0	0	XXX	0	rea						
SK	-1	0	1	0	0	0	XXX	0	16	ī	NPV		Investment		
UA	-5	4	1	0	0	0	XXX	-1	20		-562		cost		
Region	12	7	16	9	43	0	XXX	-562	M€,	i i					
Sensitivity for NPV	Best est. Fla	t oil -10%		in EnC in E		in	+10% +20 in in uropeEuro		2		CO2 SOS				
GAS_16										N	larket				
Utiliza	ation	: fror	n AL	to M	E 1%	1				inte	egration				
from	ME to	o HR	0%							Be	enefit		Cost	_	
E R	EKK		DN	1V-GL		3rd Ga	as Group I	Meeting	30	June 2016				77	

GAS_16: Ionian Adriatic Pipeline

GAS_16: Ionian Adriatic Pipeline

		Welfar	e char	nge, M	2		Inv.		Dreisst	Countra	Courstant		acity,	
	Cons.	Prod.	Trad.	Infra	Total	CO ₂ , M€	cost, M€	NPV, M€	code	A	Country B	<u> </u>	h/d B→A	Date
AL	0	0	0	0	0	0	XXX	-295					D-7A	
BA	0	0	0	0	0	0	XXX	0	GAS	AL	IT	300	-	2020
BG	0	0	0	0	0	0	XXX	0	LNG 17	FSRU	AL	150	-	2020
GR	0	0	0	0	0	0	XXX	0						
HR	0	0	0	0	0	0	XXX	0			GA	AS_17		
HU	0	0	0	0	0	0	XXX	0			•	/		
IT	0	0	0	0	0	0	XXX	0						
КО*	0	0	0	0	0	0	XXX	0						
ME	0	0	0	0	0	0	XXX	0		1		!		
MK	0	0	0	0	0	0	XXX	0						
MD	0	0	0	0	0	0	XXX	0						
PL	0	0	0	0	0	0	XXX	0	tal					
RO	0	0	0	0	0	0	XXX	0	l tc	i i				
RS	0	0	0	0	0	0	XXX	0	rea					
SK	0	0	0	0	0	0	XXX	0	2016 real total				1	
UA	0	0	0	0	0	0	XXX	0	201		NPV		Investmen	τ
Region	0	0	0	0	0	0	XXX	-295	M€, .		-295		cost	
Sensitivity for NPV	Best est.	at oil -10% LNG	∕o +10% ,	in EnC in I	5% -20% EnC in P Europe	in	+10% +20 in in uropeEuro	OUT HD	2		CO2			
GAS_17										l / N	SOS Iarket egration			
Utiliza	ation	: AL-:	IT 0%	∕₀, AL	. LNG	0%					enefit		Cost	

GAS_17: Eagle LNG + pipeline

GAS_17: Eagle LNG + pipeline

Thank you!

REKK www.rekk.hu

Borbála Takácsné Tóth

Senior research associate

REKK (REKK Kft.) Po. Box 1803 1465 Budapest Hungary

E-Mail: borbala.toth@rekk.hu **Phone:** +36-1-482-7070

DNV GL www.dnvgl.com

Dr. Daniel Grote

Senior Consultant Policy & Regulation

DNV GL Energy (KEMA Consulting GmbH) Kurt-Schumacher-Str. 8 53113 Bonn Germany

E-Mail: Daniel.Grote@dnvgl.com **Phone:** +49-228-4469049

81

DNV.GL