

Energy Community Workshop

Energy Storage Technologies

Presented by: Jacopo Tosoni, EASE Head of Policy

2. Energy Storage Overview

What is Energy Storage?

We follow the energy storage definition established in the Clean Energy Package, Article 2(59) of Directive (EU) 2019/944 of the European Parliament and of the Council.

Where: V2G: vehicle-to-grid, V1G: smart charging, P2G2P: Power-to-gas-to-power, P2H2P: Power-to-heat-to-power, P2G: Power-to-gas, PHS: pumped-hydro storage, CAES: Compressed air energy storage, LAES: Liquid air energy storage

1. Renewable energy generation and energy storage

Source: WindEurope, 2023

European Association for Storage of Energy

1. RES Generation and Energy Storage

Renewables curtailment

Germany

Congestion Management Costs: €1.3bn (2019) and €1.4bn (2020)

1. RES Generation and Energy Storage Renewables curtailment

European Association for Storage of Energy

The solution: scale up flexible assets compatible with net-zero:

- > to channel surplus or shift it to shortage hours
- > to cover up for renewables' shortage

2. Energy Storage Overview

What is energy storage?

Fig. 2. Example of curtailment and residual demand in a power system.

Flexibility duration	System Challange	Dispatchable generation	Grid reinforcement	Curtailment or feed-in management	Energy Storage – bidirectional flexibility (energy shifting)	Demand-side response/Energy Storage – unidirection flexibility
Intraday	Intermittent daily generation					I
	Reduced grid stability					
Multiday, multiweek	Multi-day imbalances					
	Grid congestion					
Seasonal duration	Seasonal unbalances					
	Extreme weather events				~	

Source: https://www.icax.co.uk/Heat_Recycling.html

📀 Solution Partial solution

Source: https://ease-storage.eu/energy-storage/technologies/

What Solutions at our Disposal?

Source: Global Data (2019), IRENA (2020), WEC (2020), BNEF (2020), EU (2020), HEATSTORE project (2021)

What Solutions at our Disposal?

Shorter storage

Energy storage form	Technology	Market readiness	Sector integration	Deployment
Electrical	Supercapasitors	Commercial	/	approx. 1%
Electrochemical	Classic batteries	Commercial		
	Aqueous electrolyte flow batteries	Pilot/commercial	Electricity +	100/
	Metal anode batteries	R&D/pilot	Mobility	approx. 10%
	Hybrid flow battery, with liquid electrolyte and metal anode	Commercial		
Mechanical	Novel pumped hydro (PSH)	Commercial		
	Gravity-based	Pilot/commercial		
	Compressed air (CAES)	Commercial	Electricity + Gas	approx. 85%
	Liquid air (LAES)	Pilot (commercial announced)	2	
	Liquid CO ₂	Pilot		
	Flywheel	Commercial		
Thermal	Novel pumped hydro (PSH)	Commercial		
	Sensible heat (eg, molten salts, rock material, concrete)	R&D/pilot	Electricity +	
	Latent heat (eg, aluminum alloy)	Commercial	Heating	approx. 1%
	Thermochemical heat (eg, zeolites, silica gel)	R&D	and Cooling	
	Ice storage	Commercial		
Chemical	Power-to-gas-(incl. hydrogen, syngas) -to-power	Commercial/pilot	Electricity + Gas	approx. 1%

#EEF_BriefingSession

3. European Union PCI Projects: Which Technologies?

a. Mechanical Storage – Pumped Hydro Storage (PHS)

DescriptionGenerally, this involves pumping water into a large reservoir at a high elevation—
usually located on the top of a mountain or hill. When energy is required, the water
in the reservoir is guided through a hydroelectric turbine, which converts the
energy of flowing water to electricity.Power range [1]10 MW - 3.0 GW

Power range ^[1]	10 MW - 3.0 GW
Energy range	up to some 100 GWh
Discharge time	min – some 10h
Cycle life	technically unlimited
Life duration	> 80 years
Reaction time	some sec- few min
Efficiency ^[2]	70 - 85 %
Energy (power) density	0.5 - 3 Wh/kg
CAPEX: energy	40 - 150 €⁄ kWh
CAPEX: power	400 - 1,500 €/ kW

a. Mechanical Storage – Pumped Hydro Storage (PHS)

State of the art Generally speaking, PHS is the most mature storage concept in respect of installed capacity and storage volume. There are over 170 GW of pumped storage capacity in operation worldwide, with Europe accounting for approximately 33% of the market. PHS PCI projects are numerous.

Applications

Due to their flexibility, large-scale storage possibilities and grid operations benefits, PHS systems will enable utilities to efficiently balance the grid and to develop their renewable energy portfolios. In fact the installation of intermittent renewable generation has added a new degree of uncertainty to the dispatch of interconnected power system. Pumped storage is therefore set to play a key role in enabling renewables' grid integration while helping countries meet their ambitious targets of cutting GHG emissions and of building additional clean renewable energy capacity.

a. Mechanical Storage – Compressed Air Energy Storage (CAES)

Description CAES uses excess electrical energy to compress air using an electrically driven pump. When excess or low-cost electricity is available from the grid, it is used to run an electric compressor, which compresses air and stores it under high pressure. When energy is required, the compressed air is directed towards a modified gas turbine, which converts the stored energy to electricity.

Power range	Some 100 MWs
Energy range	100 MWh - 10 GWh
Discharge time	Some h – some 10h
Life duration	> 30 years
Reaction time	Some min
Efficiency	≈ 55 %
CAPEX: energy	50 - 150 €∕ kWh
CAPEX: power	400 - 1,200 €/kW

a. Mechanical Storage – Compressed Air Energy Storage (CAES)

b. Chemical Storage – Hydrogen

Description Chemical energy storage systems store electricity through the creation of chemical bonds. Defined as the utilisation of chemical species or materials from which energy can be extracted immediately or latently through different processes. For example: using power to create syngases, which can subsequently be used to generate power.

Power range	1 kW - 1 GW
Energy range	Some 10 kWh – several GWh
Discharge time	Some h – some weeks
Cycle life	n.a.
Life duration	5-30 years
Reaction time	<sec -="" <min<="" th=""></sec>
Efficiency	20-40 %*
Energy (power) density	30 - 2,550 kWh/m³ (H ₂ tank storage)
CAPEX: energy	1-10 €/ kWh
CAPEX: power	2,000 - 5,000 €∕ kW

b. Chemical Storage – Hydrogen

State of the art

One chemical energy storage solution is hydrogen. Currently, there are many power-to-gas projects emerging in different European countries. Only a few of the demo projects have large scale storage and re-electrification in its scope.

Balancing demand & supply: seasonal & weekly fluctuations, ancillary services

Grid management: grid extension alternative, grid reinforcements...

Hydrogen refuelling stations Hydrogen production as raw material

3. Technologies

c. Electrochemical Storage – Classic Batteries

Description Batteries are an energy storage technology that uses chemicals to absorb and release energy on demand. Unlike many other forms of energy storage, batteries can provide great flexibility. They can respond faster and help maintain grid stability by turning on and off in fractions of a second.

Power range	1kW to 50 MW
Energy range	Up to 10 MWh
Discharge time	10min to 4h
Cycle life	2,000 - 10,000 cycles
Life duration	15 – 20 years
Reaction time	Some millisec
Efficiency	90 - 98 % (*)
 Energy (power) density	120 - 180 Wh/kg
CAPEX: energy	700 - 1,300 €∕kWh
CAPEX: power	150 - 1,000 €/kW

3. Technologies

c. Electrochemical Storage – Classic Batteries

State of the artLithium-ion is the most common battery chemistry used to store
electricity. Batteries PCI projects are on the rise.

Residential and commercial buildings: time shifting and self-consumption of locally produced PV energy

Distribution grids: voltage, capacity and contingency support of smart grids

Transmission grids: Ancillary services, namely frequency regulation

Renewable generation: smoothing and shaping functions associated with voltage and frequency support to ensure better integration of large renewable plants into the electricity system

PCI projects are not only about adding new capacity – they are also about smarter grids, better provision of different system services

4. Applications

Energy Storage Applications – Summary

• EASE divides the applications into **five main categories**:

Generation Support Services and Bulk Storage Services Services to Support Transmission Infrastructure

Services to Support Distribution Infrastructure

Services to Support Behind the Meter Customer Energy Management

Ancillary Services

Conclusions The importance of energy storage

- > Renewable generation and energy storage go hand-in-hand with renewables deployment
- Energy storage itself embraces very different solutions that provide different services at different timeframes
 - Unsurprisingly, PCI projects rely on several technologies
- Focusing on energy storage projects (from an countries interconnection-perspective or not) has several benefits related to several aspects:
 - Technical
 - Cost savings
 - Market efficiency
 - Environment
 - Energy security / Geopolitical