

STRATEGIC FRAMEWORK FOR DEPLOYMENT OF E-CHARGING STATIONS ON TEN-T NETWORK

20 December 2023, Vienna

Content of the presentation

✓ Legal basis

- ✓ The existing EVCS locations and their coverage
- ✓ The proposed EVCS locations and their coverage
- ✓ CAPEX and OPEX Cost
- ✓ GHG savings calculation
- ✓ Environmental impact assessment
- ✓ Proposed business models
- ✓ Key challenges
- ✓ Roadmap for deployment of EVCS

The existing EVCS locations

Regional Partner	Existing number of EVCS	TEN T
Albania	60	0
Bosnia & Herzegovina	93	5
Kosovo	13	1
Montenegro	49	0
North Macedonia	59	2
Serbia	85	19
Western Balkans	359	27

- Good coverage on corridors X and Vc
- Poor coverage in Montenegro, Western Serbia, Kosovo* and North Macedonia
- In Albania, partly good coverage on the north-south axis

*This designation is without prejudice to positions on status and is in line with UNSCR 1244/1999 and the ICJ Opinion on the Kosovo declaration of independence.

The methodology for identifying potential sites for charging locations

- The existing charging station locations on the TEN-T network (as the most rational for upgrading)
- The existing fueling stations as they provide basic facilities required for drivers to stop (e.g. restaurant to wait 20-30 minutes)
- The distance between each of the proposed sites does not exceed 60 km
- At least one proposed location is among a pair of nodes on the TEN-T network
- On the motorways, the locations are proposed for each direction separately
- Proximity to 10 or 20 kV electric lines (required for 300 KW and 600 KW power output)

Scenarios - Description

- Business as usual (BAU) scenario Consists of the changes in the transport systems as per "Five-year rolling work plan for the development of the indicative TEN-T extension of the Comprehensive and Core Network in Western Balkans", and the priorities of the Western Balkans Investment Framework (WBIF) under Sustainable Transport, grouped per time horizons 2025, 2030, 2040, and 2050.
- Do Something scenario Represents the impact of proposed actions on the targets of SSMS and the transport model.
- Decarbonisation scenario Consists of the measures and targets defined in the SSMS. The impact of the targets on the transport model has been defined per each modelling horizon.

Scenarios - Assumptions

	Time Period						
Scenarios	2025	2030	2040	2050			
Business as Usual	 EV Penetration: 0.5% Charger Capacities as per current situation 	 EV Penetration: 3% Charger Capacities as per Type I (22KW) & II (50KW) 	 EV Penetration: 20% Charger Capacities as per Type I (22KW) & II (50KW) 	 EV Penetration: 30% Charger Capacities as per Type I (50KW) & II (100KW) 	Annual Traffic Growth	2022-2030	2031-2050
Do Something	 EV Penetration: 3% Charger Capacities as per current situation 	 EV Penetration: 8% Charger Capacities as per Type I (120KW) & II (150KW), when required by EV traffic. 	 Penetration:25% Charger Capacities as per Type I (210KW) & II (350KW), when required by EV traffic 	 EV Penetration: 50% Charger Capacities as per Type I (210KW) & II (350KW), when required by EV traffic 	Albania Bosnia and Herzegovina Kosovo Montenegro North Macedonia Serbia	3.16% 2.46% 4.72% 3.10% 3.34% 2.91%	2.53% 1.97% 3.78% 2.48% 2.67% 2.33%
Decarbonisation	 EV Penetration: 8% Charger Capacities as per current situation 	 EV Penetration: 10% Charger Capacities as per Type I (120KW) & II (150KW) 	 EV Penetration: 60% Charger Capacities as per Type I (210KW) & II (350KW) 	 EV Penetration: 90% Charger Capacities as per Type I (210KW) & II (350KW) 			

Level of Service Waiting time (estimated)

		4	=0_0		
--	--	---	-------------	--	--

	TYPE OF EV	CITY EV	LARGE EV	CARGO VAN	TRUCK AN	ID BUSSES
	Average battery size	50 kWh	100 kWh	75 kWh	200 kWh	300 kWh
	Power output per charging port		Average time to cha	arge the battery from	20% to 80% SoC*	
	50 kW	53 min	1 h 48 min	1 h 20 min	3 h 35 min	5 h 23 min
	90 kW	30 min	1 h	45 min	2 h	3 h
Short term	120 kW	22 min	44 min	33 min	1 h 30 min	2 h 14 min
goal	150 kW	18 min	36 min	27 min	1 h 12 min	1 h 48 min
	180 kW	15 min	30 min	22 min	1 h	1 h 30 min
	210 kW	12 min	24 min	19 min	51 min	1 h 16 min
	240 kW	11 min	22 min	16 min	44 min	1 h 7 min
_ong term	270 kW	9 min	19 min	14 min	39 min	59 min
goai	300 kW	8 min	17 min	13 min	35 min	53 min
Short term goal _ong term goal	330 kW	8 min	16 min	12 min	32 min	48 min
	350 kW	7 min	15 min	11 min	30 min	46 min

Propose EVCS locations

Regional Partner	Proposed EVCS
Albania	23
Bosnia & Herzegovina	22
Kosovo	9
Montenegro	14
North Macedonia	19
Serbia	71
Western Balkans	158

133 new EVCS proposed in existing fuel stations, rest areas and parking places.

Only 5 of the proposed EVCS locations are green-field areas.

Average purchase and installation cost

	Type of charger	Purchase cost (EUR/charger)	Installation cost (EUR/charger)
2025-2039	120 kW (2xCCS)	32,000	7,000
	150 kW (2xCCS)	45,000	9,000
2039-2050+	210 kW (2xCCS)	55,000	12,000
	350 kW (2xCCS)	125,000	15,000

OPEX costs

OPEX Cost element	Cost
Electricity cost (for vehicles charging)	Depends on the price of electricity per RP and is calculated as:
	daily electricity demand * price of electricity
Routine maintenance cost	400 EUR/year/charger
Unexpected cost	7% on routine maintenance costs (EUR/year/charger)
Insurance costs	2% of total CAPEX cost (EUR/year)
Advertising cost (at the location of EVCS)	400 (EUR/EVCS/year)
Electricity consump	otion for the operation of the EVCS
Electricity consumption 2030 (billboards, standby chargers,	Consumption: 28 kWh/day/EVCS
etc.)	Cost: Depends on the price of electricity per RP and is calculated as follows:daily electricity consumption * price of electricity
Electricity consumption 2040 (billboards, standby chargers,	Consumption: 33 kWh/day/site
etc.)	Cost: Depends on the price of electricity per RP and is calculated as
	follows:daily electricity consumption * price of electricity
Electricity consumption 2050 (billboards, standby chargers,	Consumption: 38 kWh/day/site
etc.)	Cost: Depends on the price of electricity per RP and is calculated as follows:daily electricity consumption * price of electricity

CAPEX costs

Regional Partners	Scenario				
	BaU	Do Something	Decarbonisation		
	TOTAL CAPEX (20	30 + 2040 + 2050)			
Albania	2.472.000	22.439.000	26.140.000		
Bosnia and	2 422 000	18 681 000	22 196 000		
Herzegovina	2.422.000	10.001.000	22.130.000		
Kosovo	1.861.000	9.059.000	12.168.000		
Montenegro	1.928.000	12.492.000	13.346.000		
North Macedonia	2.297.000	17.242.000	20.342.000		
Serbia	4.479.000	62.176.000	66.403.000		
Western Balkans	15,459,000	142,089,000	160,595,000		

Results of calculation of GHG emissions avoided from introduced EVCS

Saved GHG emissions (in tCO²e)

Regional Partners	203	030 2040		40	2050	
	Do smth	Decarb	Do smth	Decarb	Do smth	Decarb
Albania	777	972	3,119	7,486	8,010	14,418
Bosnia & Herzegovina	120	150	481	1,154	1,233	2,220
Kosovo	31	39	141	338	408	734
Montenegro	136	170	552	1,324	1,439	2,590
North Macedonia	124	155	518	1,244	1,387	2,497
Serbia	501	627	1,976	4,742	4,983	8,970
Western Balkans	1,690	2,112	6,786	16,287	17,460	31,428

EIA Regulatory Framework Introduction of EVCS projects

- All the Western Balkan have largely harmonised their EIA legislative framework with EU EIA Directives, including Directives 2011/92/EU and 2014/52/EU.
- EVCs projects (as such) are not listed either in Annex I or Annex II of the national EIA regulations, meaning that those projects are not a subject of an EIA procedure;
- However, the EIA regulations leave the space that any of the infrastructure projects may requires an EIA Screening procedure if planned in environmental sensitive areas (nature-protected areas, vicinity of the cultural heritage, water protection zones, fire risks, flood risk, etc.);
- In case that the installation of a large number of EVCS is planned within the National Plan or Program (e.g. of E-mobility), such a document (Plan/Program) may be subject to a Strategic Environmental Impact Assessment (SEIA), as required by the SEIA Regulations;
- In case that the installation of a large number of EVCS is financed with the support of International Financial Institutions (EU, EBRD, EIB, WB, etc.), it is to be expected that such project could be subject to Environmental Due Diligence (ESDD) according to respective IFIs standards.

Business models

Public contract	The public authority controls the specification, installation, operation and use of the infrastructure . It retains most of the project risks from installation through to exploitation (including user-demand risk). The public authority finances the capital, operation and maintenance expenditure, and collects and retains revenues from users.
Joint venture	The <u>public authority and private partner share control of the infrastructure</u> through a joint venture company they create. The <u>risks are</u> <u>shared</u> by the parties according to their stakes in the joint venture. The model is flexible on arrangements for <u>financing, which might</u> <u>come from one or both parties or from a separate third party</u> . User revenues are also collected and shared by the parties according to their stakes.
Concession	The public authority retains some control over the specification, installation, operation and use of the infrastructure. The risks associated with installation through to exploitation (including user-demand risk) are typically transferred to the private partner, although risk allocation in the concession contract can be tailored to the specific circumstances. The private partner finances the capital and maintenance expenditure, with or without subsidies, guarantees or other financial support from the public authority. It also collects and retains user revenues, with or without sharing with the public authority.
Availability-based contract	The <u>public authority retains some control over the infrastructure</u> , as in the concession model. <u>Risks associated with installation through</u> <u>to exploitation</u> are mainly transferred to the <u>private partner</u> , with the notable <u>exception of user-demand risk</u> . The <u>private partner</u> <u>finances the expenditure</u> , with or without financial support from the public authority, and <u>is paid by the public authority over the</u> <u>duration of the contract only if the infrastructure is continually available for its intended use</u> .
Licence	The private partner controls the infrastructure and retains most of the project risks from installation through to exploitation. It finances the capital and maintenance expenditure, and collects and retains user revenues. A licence might include conditions and limitations regarding the private partner's actions, but typically allows more freedom than other partnering models (stating what the private partner may, rather than must, do).

Regional Participants – state of play

Albania

There is no specific contractual model that is being used for the deployment of EVCSs, since there is no explicit legislation dealing with EC charging infrastructure.

Bosnia and Herzegovina

There is no specific contractual model that is being used for the deployment of EVCSs, since there is no explicit legislation dealing with EC charging infrastructure.

Kosovo

There is no primary or secondary national legislation that deals specifically with building publicly accessible recharging infrastructure for EV in Kosovo.

Montenegro

No specific model is used for the public EVCSs

North Macedonia

No specific model is used for the public EVCSs

Serbia

Traditional Public Procurement is used as a contractual model for the deployment of EVCS

Proposed business models for EVCS

Regional Partner	Public contract Joint venture	Concession	Availability-based contract	Licence
Albania		٧٧	V	V
Bosnia &	vv	٧		V
Herzegovina				
Kosovo		VV	V	V
Montenegro	VV			V
North Macedonia		٧٧	V	V
Serbia	VV	V	V	V

Key challenges

- The coordinated development of the EVCS network in all RPs
- Transposition of Directive 2014/94/EU (now AFIR)
- The funding of the EVCS development
- The selection of the most appropriate business model
- The improvement of the electricity grid and the transposition of the Directive 2019/944/EU common rules for the internal market for electricity

Roadmap to deploy EVCS network

Proposed actions	2023	2024	2025	2026
Establishment of a "Coordination Committee for the EVCS development in WB6"				
The coordinated transposition of the EU Directive 2014/94/EU on				
the deployment of alternative fuels infrastructure in the legal				
systems of the RPs				
Setting of common approach to the selection of e-charging				
technology (specifications, other)				
Identification of "horizontal" (for all RPs) external funding				
possibilities				
Coordination of the implementation by all RPs of Phase 1 (of				
EVCS development)				
Coordination of the preparation of the RPs for the				
implementation of Phase 2 (of EVCS development)				
The selection of e-charging technology (i.e., the minimum				
common specifications for the EVCS to be developed in all RPs);				

www.transport-community.org

nhoxha@transport-community.org