

Investments in refinery capaticies in Serbia

September 2016 Belgrade, Energy community Vladimir Gagic, NIS, Refinery **Presentation content**

- 1. Refinery history
- 2. Refinery today
- 3. Strategy and development
- 4. Key investments
- 5. Conclusion

History of refinery

Refinery today. Key competitors

Country	Owner	Refinery	Capacity MM tonnes	Complexity
Hungary		Duna	8,1	10,8
Slovakia	MOL	Bratislava	6,1	14,4
Croatia	MOL	Rijeka	4,5	9,1
Croatia		Sisak	2,2	6,6
Bulgaria		Burgas	9,5	9,1
Romania		Ploesti	2,4	12,2
Romania		Petrobrazi	4,5	11,1
Romania	Rompetrol	Petromedia	5,0	10,3
Bosnia	Zarubezhneft	Bosanski Brod	3,0	7,1
Serbia	NIS	Pancevo	4,8	8,5 9,5 *

Source: NIS, workgroup analysis * Nelson index after refinery upgrade

Refinery today. Key business drivers

Margins under pressure

- competition
- regulated prices \rightarrow market related prices

Mogas / diesel imbalance

- need for max upgrading/conversion capacity
- need for export options

Product quality pressure

- Eurograde quality
- GHG balance biofuels

SWOT analysis

Variability and uncertainty in demand growth escalate globalization of the downstream sector

Strategy objectives

NIS Refining business:

- Health & Safety
- Modern & efficient processes and operations
- Long term profitability based on sustainable development model
- One of the most efficient refineries in South East Europe
- Zero per cent of heavy residues

Development directions

Efficiency

- Increase Operation Availability
- Improve Technology Efficiency
- Increase Energy Efficiency
- Develop Personal Efficiency

New technologies

- Use of conversion-type hydrogenation processes
- Technologies that will allow termination of fuel oil production

Key directions:

Maximize efficiency of existing refinery assets & Introduce new technologies

HSE Indicators

Block Refining

Health and Safety

Injuries (LTIF):

2006 – 69 injuries in Refinery 2016 – 0 injuries in Refinery

874 days without Refinery workers injuries!

Our workers increased number of observations and <u>improvement</u> actions to more that **9000/year**!!!

Industrial safety

- Number of maintenance activities on process equipment decreased **68%** after <u>reliability program implementation</u>!

HSE Indicators

Block Refining

HSE Training in Refinery

- All Refinery and contractor workers <u>must be</u> HSE trained in our Refinery
- There are theoretical and **practical** training for all High risk works
- Our goal is to improve HSE culture

Efficiency: key performance indicators

Refinery modernization 1st phase (till 2012) Mild Hydrocracking Complex (MHC) [completed]

Refinery modernization 2nd phase(till 2019) Delayed Coker Unit (DCU) [in progress]

Introduction of the new technologies (phase realization) Fully in line with NIS refining development strategy by 2030

MHC Complex [completed]

Scope

- Mild Hydrocracking complex
- Hydrogen Generating Unit
- Sulphur recovery unit
- Amine regeneration unit
- Sour water striper unit

Effects

-Increased yield of the diesel and petrol
-Improved quality of the products
-Reduced the content of the sulphur (according to the Euro 5 specification)

Cost/Time

Total cost: App. 500 MM EUR Realization (EPC phase): 2009-2012

MHC Technology: Chevron EPCM contractor: CB&I Lummus

Gasoline	Before	After					
Sulphur, max, mg/kg	650	10					
Benzene, max, % (v/v)	5	1					
Total aromatics, % (v/v)	65	35					
Pb, mg/l	13	0					
Diesel	Before	After					
Sulphur, mg/kg	5.000 (avg)	max. 10					
Polycyclic aromatics max, % (m/m)	not limited	11					

MHC Complex [completed]

MHC/DHT FEED

- Petroleum, Light & Heavy Gas Oil from Crude Distillation Unit
- Vacuum Heavy & Light Gas Oil from Vacuum Distillation Unit

KEY FLOWS

- Unconvertible Oil: Feed to FCC unit
- Low sulphur kerosene: Diesel blending (high quality jet fuel)
- Low sulphur Euro Diesel: High quality product (Euro 5 standard)

MCH: Realized fully in line with NIS refining developement strategy

MHC Complex [completed]

	Implementation Sc	heo	dule	Э		⊢																							
2006							20	07		2008				2009				2010				2011				2012			
N	<u>lo</u>	Т	Ш	ш	IV	Т	П	III	IV	Т	Ш	ш	IV	Т	Ш	III	IV	I	Ш		IV	Т	П	ш	IV	Т	П	ш	IV
1	¹ MHC																												
2	² Design & survey work												1			1								1					
3	3 Equipment and Materials																												
4	Construction and assembly works																				ł 1	ł 1				1			
5	5 Other												i I	j 1	1	1	j I	i I		i I									

Project realized within planned budget and projected time frame. Proved projected process performance

Delayed Coking Unit (DCU) [in progres]

Scope New Units – Delayed Cocking Unit – Amine regeneration unit – Acid waste water treatement unit Revamping of existing Units	 Effects Increasing of refinery profitability Maximazing high-margin finished products production Maximazing process utilization 								
 MHC/DHT hidro cracking Sulphur & Merox Unit 	 Increasing of flexibility (vs. market requirements and constraints) 								
Cost/Time	Product yield:								
Total cost: App. 330 MM US\$ Realization (EPCm phase): 2016-2019	- Termination of Fuel Oil production								
DCU Technology: Lummus Technology EPCM contractor: TBA									

Delayed Coking Unit (DCU)

DCU Feed

- Vacuum Residue from Vacuum Distillation Unit
- Slurry oil from Fluid Catalytic Cracking Unit.

KEY FLOWS:

- LPG: To LPG storage (after amine washing & caustic treatment)
- Coker Naphtha and Light Coker Gasoil: To DHT;
- Heavy Coker Gasoil: To Mild Hydrocracking (MHC);
- The produced coke: Market (as coke fuel grade)

DCU: Technology optimally selected for closing identified gaps

Delayed Coking Unit (DCU) [in progres]

Implementation Schedule 2013 2014 2015 2016 2017 2018 2019 N⁰ ш IV ш ш ш Ш ш IV ш IV Ш ш ш IV н Ш IV ш IV Ш 1 DCU ² Design & survey work ³ Equipment and Materials Construction and assembly works 4 5 Other

Current project status:

- Confirmed Project Economical effectiveness and approved project budget

- Signed Purchase Orders for LLI equipment

Delayed Coking Unit (DCU). Key phases

- Feasibility Study (completed 07/2013)
- FEED CONTRACTOR Selection (completed 02/2015)
- BASIC/FEED Design (completed 02/2016)
- EPCM CONTRACTOR Selection (in progress)
- EPCM (expected duration is 28 months)

Conslusion

- Key business challenges recognized and addressed
- Efficiency improvement program defined and realization started
- First phase of refinery modernization completed
- Competitive position on the market significantly improved
- NIS refinery continues realization of significant investment program despite negative macroeconomic environment

